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Part four 

 

DESIGN OF THE 

INTELLIGENT CONTROL 

STRUCTURE 

 

In this chapter, the control structure component blocks will be designed from both 

algorithmic and soft development points of view. Mainly, three bioprocess types 

will be analyzed: enzymatic hydrolysis of wheat straw, alcoholoxydase obtaining 

with the methylotrophic yeast Hansenula polymorpha and yeast growth on 

simulated liquor. Hence, it will be interpreted the configuration aspects and the soft 

implementation to the block level structure (i.e. filter, estimation, pattern 

recognition, fuzzy control and expert system). Moreover, a specific database will 

be configured on AS400 system, with specific structure for each analyzed case. 
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4 . 1 .  T H E  E X P E R T  S Y S T E M   
 

 

Following the demonstration presented in 

#3.3, the expert system must select, based on 

a priori information outfitted by the human 

operator, the bioprocess class corresponding 

to the considered fermentation process. After 

the class selection, and based on pattern 

recognition (through a neural network), the 

corresponding bioprocess model evolution is 

chosen. Once the model selection, the optimal 

values can be (analytically) calculated and 

transferred as set point values to the fuzzy 

control block. Hence, the expert system 

performs as supervisor within the framework 

of the intelligent control structure.  

 

Structurally, the expert system is based on 

human expert knowledge, formalized as 

logical rules. The term “rules” has a large 

meaning. It includes different elements and 

knowledge corresponding to the bioprocess, 

i.e. the main process parameters, the general 

evolution curves, etc. The knowledge is 

configured as syntactical forms, if...then. 

Hence, after the rule selection by the expert 

system, the corresponding bioprocess control 

strategy (based on human knowledge) is 

applied. Moreover, the expert system must 

supervise the whole control system, in order to 

change the global control strategy (if there is 

non-optimal) and even stop the bioprocess if 

the metabolic evolutions are troubled.  

 

4.1.1. The a priori information 

 

Corresponding to the bioprocess start time 

(t0=0), a priori information is needed (cf. 

#3.3). These information concern to process 

type selection. Three bioprocess types will be 

analyzed in this work: 

• Enzymatic hydrolysis of a lignocellulosic 

substrate (wheat straw); 

• Alcoholoxydase obtaining with the 

methylotrophic yeast Hansenula 

polymorpha; 

• Yeast cultivation on simulated liquor. 

 

Hence, the human operator must select one of 

these three bioprocess types. The expert 

system checks the corresponding routines (see 

Table 1) enclosed in each block. Obviously, 

the modeling/control structure is good defined 

from the commencement (evolution patterns, 

necessary estimated parameters, and fuzzy 

strategy); only the evolution type (e.g. 

inhibitory/non-inhibitory process, etc.) and the 

optimum parameter values must be 

determined.  

 

These steps can be performed (from 

procedural point of view) through two files: 

SELECT.H and SELECT.C. Note that the 

function SELECT.C is based on a case 

structure: each bioprocess type calls the 

specific routines (see Table 1).  

 

4.1.2. The knowledge database 

 

The necessary knowledge for bioprocess 

control can be defined at this level because the 

expert system must coordinate the control 

structure. The human expert defines this 

knowledge for each instance.  

 

The knowledge database for the enzymatic 

hydrolysis of wheat straw 

 

In this case the knowledge database is 

composed of two working hypotheses:  

• Non-inhibitory process; in this case the 

Michaelis & Menten equation is available; 

• Inhibitory process; the evolution 

corresponds to 3.1.4.1 equation. 
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Table 1. The expert system operation selections vs. a priori information  

Bioprocess type Selection 

 Set Point 

Estimation 

Pattern 

Recognition (NN) 

Parameter 

Estimation (NN) 

Fuzzy Control 

 

Enzymatic 

hydrolysis 

 

• max 

 

• max, Sopt 

 

• non-inhibitory 

process; 

• inhibitory 

process  

 

(, S)  

K1, K2, K3 

 

=f(S) 

 

Alcoholoxydase 

production 

 

Xmax 

 

• Gaden eq; 

• Extended eq. 

 

(dP/dt, dX/dt, S) 

XP, K1, K2 

 

dP/dt=f(S) 

 

Yeast 

cultivation 

 

max 

 

• non- inhibitory 

process; 

• inhibitory 

process 

 

(, S, I)  

K1, K2, K3 

 

=f(S) 

 

The neural net for pattern recognition detects 

the most probable model evolution. Hence, the 

expert system selects (in the Set Point 

Estimation Block) the corresponding 

procedure for the hydrolysis rate estimation: 

the LS (Less Squares) method (in the first 

case) and the conjugate gradient method (for 

the second one). 

 

Fig. 4.1.1 Configuration structure for the control of enzymatic hydrolysis bioprocess  

 

The Neural Net for Parameter Estimation is 

active only if equation 3.1.4.1 is checked (an 

inhibitory bioprocess). Moreover, the expert 

system must stop the control structure 
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functionality if a component block of the 

intelligent control structure reports an 

irremediable error.  

 

The soft implementation can be realized 

through two working files: KBEH.H and 

KBEH.C. The procedure KBEH.C is founded 

on a case statement with two possibilities: 

non- inhibitory and inhibitory bioprocess. 

 

The knowledge database for alcoholoxydase 

obtaining with the methylotrophic yeast 

Hansenula polymorpha 

 

In this case (cf. #3.1.3) the knowledge 

database consists of the following working 

hypothesis: 

• The product formation respects Gaden 

equation (i.e. the cell concentration, X, is 

equal to the threshold value, XP; 

• The product formation refers to equation 

3.1.3.1.  

Due to the fact that NNPR selects the 

bioprocess evolution curve, the expert system 

(through SPEB) picks out the corresponding 

procedure for XP determination. If X=Xp, the 

bioprocess evolution agrees with Gaden 

model (cf. #3.1.3). The Neural Net for 

Parameter Estimation is active only if equation 

3.1.3.1 is checked (extended Gaden model). 

Furthermore, the expert system must stop the 

control structure running if a component block 

of the intelligent control structure reports an 

irremediable error.  

 

The soft configuration of knowledge database 

can be achieved through two files KBAP.H 

and KBAP.C; the procedure KBAP.C can be 

built on a case statement, too: Gaden model 

and extended Gaden equation. 

 

Fig. 4.1.2 Configuration structure for the control of alcoholoxydase production bioprocess  

 

 

 

 

 

 

 

The knowledge database for yeast cultivation 

on simulated liquor 

 

Conforming to #3.1.6, there are two 

bioprocess evolution possibilities, in relation 

with the presence/absence of inhibitors (i.e. 



PART 

FOUR 

D E S I G N  O F  T H E  B I O P R O C E S S  I N T E L L I G E N T  C O N T R O L  

S T R U C T U R E  

 

 5 

acetic acid). Hence, the process behavior can 

be conforming to the proposed equation 

(3.1.6.2) or with regard to Monod model. 

From this cause, there are two applicable 

hypotheses:  

• Non-inhibitory process (i.e. Monod 

model); 

• Inhibitory process (i.e. equation 3.1.6.2). 

Once the pattern evolution curve is fixed, the 

expert system runs (through SPEB) the LS 

procedure either for the specific growth rate 

(max) estimation (non- inhibitory bioprocess) 

or the conjugate gradients procedure 

(inhibitory bioprocess).  

 

Like the precedent cases, the expert system 

ends the control process if the other 

component blocks signal an error.  

 
Fig. 4.1.3 Configuration structure for the control of yeast cultivation bioprocess  

 

The working hypotheses were realized 

through a case statement with two variants: 

non-inhibitory / inhibitory bioprocess. The 

corresponding files were KBYC.H and 

KBYC.C.



PART 

FOUR 

D E S I G N  O F  T H E  B I O P R O C E S S  I N T E L L I G E N T  C O N T R O L  

S T R U C T U R E  

 

 6 

4 . 2 .  N E U R A L  N E T W O R K S  

 

 
The most widely used and easily recognized 

neural network is the backpropagation 

network (Karim, Rivera, 1992). By some 

estimates (Welstead, 1994) it accounts for 90 

percent of all neural network applications. The 

terminology backpropagation as a name for 

the network is misnomer, as this term actually 

refers to a training algorithm rather than 

network architecture. The network can be 

more properly called a feedforward neural 

network.  

 

The widespread applicability of feedforward 

networks comes from the fact that three-layer 

feedforward networks are universal 

approximators (Hornik et al, 1989; 

Kuschewski et al., 1993). In fact, the Stone-

Weierstrass theorem is used to prove this 

property. Note that this is an existence result, 

as opposed to a constructive result.  

 

Following this fact, all neural networks used 

in this work will be designed with only one 

hidden layer.  

 

4.2.1. Building a feedforward network 

structure 

 

One of the details that must be addressed when 

building complete neural net structure is the 

matter of getting data to the network (Rohwer, 

Renals, 1991; Kazakos, Kazakos, 1989). In 

this section the necessary procedures to read, 

store and process training data will be 

described.  

 

Hence, the header file TRN.H (for the training 

file procedure) defines a training_rec 

structure, which holds all of the arrays and 

variables needed to store and manipulate the 

training data. Note the use of the variable 

allocated, which acts as boolean flag to 

indicate whether or not the arrays in the 

structure have been allocated in memory. This 

flag can be checked prior to freeing the 

allocated array pointers, rather than checking 

each pointer separately (to avoid the potential 

problem of freeing an unallocated pointer – a 

sure way to crash the system).  

 

The training data can be handled through an 

editor, in a text file. The procedure 

TRNPRCS.C is designed to manipulate the 

training data. Note that the training file does 

not directly provide the number of training 

items. This information is determined from the 

file size, i.e. the utility open_input_text_file – 

in the UT.LIB library, header file UT.H (see 

Annex) – returns the file size. It is important 

that all the training data items occupy the same 

length in the file – obviously the procedure 

will not work.  

 

The header file FF.H defines the types, 

variables, and functions needed for the 

feedforward network. A structure type called 

network_rec defines the network itself. The 

hidden layer nodes as well as the weight arrays 

are of type double. The structure type 

weights_rec contains both the input and output 

layer weight arrays.  

 

The structure ff_setup_rec is the setup 

structure for the feedforward neural network. 

The explanation of each field is given below: 

• error_threshold – the error tolerance to be 

satisfied during training; 

• start_iter – normally set to 0; this field can 

have other values when training is 

interrupted and the user wishes to keep 

track of the total number of training 

iterations; 

• no_of_inputs – number of inputs; 

• no_of_hd_nodes – number of hidden 

nodes; 

• no_of_outputs – number of outputs; 

• in_weight_from_file – boolean flag: when 

set to true the order of training items is 

randomly shuffled using the function 

shuffl (UTSHUFFL.C in UT.LIB) at each 

iteration of backpropagation;  
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• files – substructure containing the file 

names defined in files_name_rec (UT.H); 

• sigmoid_out – boolean flag; indicates 

when a sigmoidal function is used in the 

output layer (true) or a linear function is 

used (false); 

• learning_rate – the learning rate; 

• weight_rang – the weights are initialized 

to random values between  weight_range 

 

Moreover, it is necessary to build an 

application library utilizable by each structure 

module (FF.LIB). Hence, the library consists 

of the following procedures: 

• FFTRAIN: the feedforward net training 

procedure; 

• FFBACKPR: the backpropagation 

training algorithm for feedforward 

network; 

• FFDISPL: the procedure to display neural 

net training progress on screen; 

• FFWTS: allocate, read in, write out 

feedforward network weights; 

• FFEEDFW: procedure(s) for feedforward 

network. 

 

The file FFEEDFW.C implements the 

definition of the feedforward network. The 

sigmoid function checks its arguments for size 

before applying the exponential function (in 

order to save potential floating-point overflow 

problems). The function feedforward receives 

its networks and weights arrays via parameters 

from an application-calling program.  

 

The backpropagation algorithm is 

implemented in file FFBACKPR.C.The 

momentum weights values are initialized to 

0.0 using iniatilize_weights (in FFWTS.C).  

 

Fig. 4.2.1 Organization of files in the feedforward network system  

 

The procedure train_network_from_data in 

file FFTRAIN.C is the general-purpose 

training procedure; its logic flow (operational 

description) is shown below: 

• Get the training data; 

• Get the weights (either from a file or 

randomly initialized); 

• Run the training algorithm; 



PART 

FOUR 

D E S I G N  O F  T H E  B I O P R O C E S S  I N T E L L I G E N T  C O N T R O L  

S T R U C T U R E  

 

 8 

• Free up the training data and weights. 

 

Fig. 4.2.1 shows the file organization for this 

neural net implementation, indicating the 

relationships among the main program, 

procedures and header files to one another.  

 

4.2.2. Neural nets for pattern recognition 

 

The pattern recognition procedure (Megan, 

Cooper, 1995; Megan, Cooper, 1994; Megan, 

Cooper, 1992; Hinde, Cooper, 1993) can be 

represented as a function from a space of 

images to a finite dimensional vector space 

(fig. 4.2.2): 

 

 

Fig. 4.2.2 Image classification represented as a function from a space of images to a finite-dimensional vector 

space  

 

Hence, the function assigns a specific vector 

to each image (Welstead, 1994). The neural 

networks can be considered as universal 

estimators (Wills et al., 1991); they can 

approximate any well-defined function to any 

desired degree of accuracy. Thus, there is a 

feedforward network that can approximate the 

pattern classification function shown in fig. 

4.2.2. The number of inputs to this network is 

the length of the image vector and the number 

of outputs is the length of the classification 

vector. As usual, it is not known the number of 

hidden-layer nodes. Conforming previous 

studies (Press, 1992; Chidambaram, 1992), a 

number corresponding to the number of output 

nodes seems to be sufficient.  

 

In this work, we develop a system to classify 

simple 5x5 images (to adequately describe a 

formal image). The entry data are pattern 

evolution curves digitized as square images 

(pair of coordinates).  

 

Hence, the header file PATTERNS.H defines 

the constants, types and variables needed for 

the pattern editing. The text characters 

BLOCK_1 and BLOCK_3defined in the 

utility header UTTYPES.H (see Annex) are 

the display characters for representing the two 

binary states for the image pixels. The binary 

states are represented internally by the value 

+1 (NODE_HIGH) and -1 (NODE_LOW). 

Furthermore, the structure 

pattern_display_data holds relevant 

information describing the type and number of 

patterns; this information comes from the user 

interface.  

 

The file PATTERN.C contains the routines for 

reading and writing patterns to a file. The 

procedure add_noise_to_pattern generates 
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noisy patterns by randomly changing some 

percentage of the pixels to the opposite binary 

values. This function is useful for performing 

experiments with the finished system, i.e. 

patterns corrupted with noise can be used as 

inputs to test the robustness of the trained 

network.  

 

The pattern recognition network can be build 

based on four specific tasks; a program 

module handles each task: 

1. The module for new pattern data file 

generation (necessary to symbolic 

bioprocess evolution representation): 

FFPDATA.C; the procedure 

create_new_data_file and 

new_data_file_name are utilized by the 

user interface. 

2. The module for pattern data file edition: 

FFPEDIT.C, the pattern file to be edited is 

specified by data_file_name,and the 

edited file is new_data_file_name. The 

two file names can be the same if it is not 

necessary to save the old version of the 

data.  

3. The module for pattern data 

transformation into training data (that is 

recognizable by the network): FFPCRT.C; 

the procedure create_training_file reads in 

a pattern data file and produces a training 

file in the appropriate format. This 

procedure assumes that the number of 

patterns is the same as the number of 

network outputs, i.e. each input pattern is 

the one and only representative of its class. 

The network output vector consists of all 

zeros except for a one appearing in the 

component number corresponding to the 

pattern number.  

4. The module for pattern recognition 

network running. 

 

The relationship of files specific to the pattern 

classification system is shown in Fig. 4.2.3. 

 

 

 
Fig. 4.2.3 Organization of files in the neural network for pattern recognition  

 

4.2.3. Neural net for parameter estimation 

 

Taking into account the bioprocess specificity, 

the parametric implementation of neural nets 

presents distinct features, which will be 

presented below. Hence, following the 

precedent demonstration, the neural networks 

can make good parameter estimation, if the 

training data is valuable. In the mean time, the 

bioprocess reproducibility is a relative 
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concept: there are only qualitative identically 

evolution curves (Garrido-Sanchez et al., 

1993; Muralikrishnan, Chidambaram, 1995); 

the quantitative identity is another 

desideratum (Fonteix et al., 1995).  

 

In the subsequent paragraphs it will be 

analyzed the neural nets for the specific 

bioprocesses, with focus on the specific 

particularities. From the structural point of 

view, the neural networks are identically 

designed: 

• Each neural net is composed of three 

layers (one hidden layer); 

• The neuron number from the hidden layer 

is just the same as the neuron number from 

the output layer. 

 

4.2.3.1. Enzymatic hydrolysis of wheat 

straw 

 

Following the ideas presented in #3.1.4, the 

enzymatic hydrolysis rate is characterized by 

an equation  = f(S) which is strongly non-

linear. Due to the laboratory measurement 

specificity, the substrate concentration and the 

enzymatic hydrolysis rate were determined 

off-line. For this reason, it is necessary to 

esteem these parameter values at each sample 

time. An adequate method is through an 

interpolating polynomial. In this case, the 

temperature and pH values are also 

determined. 

 

Hence, the neural network structure for 

parameter estimation is shown in fig. 4.2.4: 

 

Fig. 4.2.4 Neural network for parameter estimation (enzymatic hydrolysis of wheat straw bioprocess)  

 

The network is completely interconnected on 

account of theoretical impossibility to discern 

about the input influence on output variables.  

 

Moreover, the weights are randomly 

initialized due to the scarcity of studies 

concerning the optimal values for weight 

initialization.  

 

 

 

 

4.2.3.2. Alcoholoxydase obtaining with the 

methylotrophic yeast Hansenula 

polymorpha  

 

In this case (see #3.1.3) the on line measured 

parameter are temperature, pH, and dissolved 

oxygen. Substrate concentration, specific 

growth rate (i.e. dry weight) and enzymatic 

activity (product obtaining rate) are 

determined off line. Hence, it is necessary to 

esteem the threshold value of cell 

concentration (XP) and the model parameters 

(eq. 3.1.3.1). The network configuration is 

shown below: 

 

SK

K

TK

pHK

K1

K2

K3
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Fig. 4.2.5 Neural network for parameter estimation (alcoholoxydase obtaining) 

 

The network is completely interconnected, 

too, for the same reasons as the previous case. 

Also, the weights are randomly initialized due 

to the scarcity of studies concerning the 

optimal values for weight initialization.  

 

4.2.3.3. Yeast cultivation on simulated 

liquor 

 

For this type of bioprocess (cf. #3.1.6) the 

inhibitor concentration time variance and the 

specific growth rate connection with inhibitor 

concentration (eq. 3.1.6.2) are to be taken into 

consideration. In this case the network inputs 

are cell concentration (measured off line), 

substrate concentration (measured off line), 

inhibitor concentration (measured off line), 

temperature and stirrer speed. The off line 

variables are esteemed at each sample time 

through an interpolating polynomial. 

 

The network output variables are K1, K2, K3 

(see eq. 3.1.6.2). The network configuration is 

presented in fig. 4.2.6: 

 

Fig. 4.2.6 Neural network for parameter estimation (yeast cultivation on simulated liquor) 

 

SK

TK

pHK

K1

K2

O2K

(dP/dt)k

(dX/dt)k

Xp k+1

SK

TK

K1

K2

K3

IK

nK

Xk



PART 

FOUR 

D E S I G N  O F  T H E  B I O P R O C E S S  I N T E L L I G E N T  C O N T R O L  

S T R U C T U R E  

 

 12 

Similar to precedent cases and for the same 

considerations the network is completely 

interconnected and the weights are randomly 

initialized. 

 

4.2.4. Neural network for pattern 

recognition design  

 
Transformation of characteristic curves in 

(low resolution) standard pictures remove 

details but provides noise reduction and faster 

calculation (Garrido-Sanchez, et al., 1993). 

Moreover, a local evolution variation has a 

punctual influence on the general bioprocess 

evolution and sampling time variation has 

only few influences. Indeed, each pixel 

usually corresponds to several experimental 

data, and thus, this method retains only the 

general shape of the curve. Picture size is 

chosen as small as possible to ensure correct 

determination of kinetic facts.  

 

The neural network utilization is focused in 

these conditions on curve classification 

without parameter identification, in view of 

bioprocess qualitative evolution type.  

 

From a structural point of view, the neural 

network contains 25 inputs (according to 

y=f(x) graphic formalization, i.e. (x1, y1); 

(x2,y1); ...(x1, y2);...(x5, y5)) and a number of 

outputs corresponding to the number of 

classification curves (e.g. bioprocess 

with/without inhibition, etc.). The neuron 

number on the hidden layer is identical to the 

neuron number on the output layer (cf. #4.2.3). 

 

Concerning the former, human expert selects 

theoretical curves (a priori information) that 

determine the exemplar vectors. The picture 

resolution is 5x5 and a pixel is highlighted (i.e. 

set to high value +1) if at least one point is 

present in this area. When the pattern 

recognition (classification) occurs, only a 

single output is selected, according to human 

expert classification.  

4.2.4.1. Neural net for pattern recognition 

applied in enzymatic hydrolysis of wheat 

straw  

 

The extension of Michaelis & Menten model 

to enzymatic hydrolysis bioprocess (cf. 

#3.1.4) makes evident two process evolution 

possibilities, i.e. the classical natural process 

(the substrate concentration in medium is 

lesser than optimum value) and the inhibition 

process (eq. 3.1.4.1). 
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Fig. 4.2.7 Neural net for pattern recognition (enzymatic hydrolysis of wheat straw)  

 

Hence, the neural network will have two 

outputs (and implicitly, two neurons on the 

hidden layer). The outputs accord with two 

linguistic variables: “non-inhibiting process”, 

i.e. equation Michaelis & Menten is applicable 

and “inhibition process”, i.e. the enzymatic 

hydrolysis process agrees with eq. 3.1.4.1. 

 

The training values correspond to the square 

shown in fig. 4.2.8. Hence, the input values 

are: x1=1; y1=1; x1=1; y2=0; x1=1; y3=1..., 

x4=0; y1=0;...x4=1; y4=1;...x5=0; y5=0 (non-

inhibition process), and x1=1; y1=1; x1=1; 

y2=1; x1=1; y3=1,...,x4=1; y1=1;...x4=1; 

y4=1;...x5=0; y5=0 (inhibition process).  

 

If the process evolution agrees with curve (a), 

the output “non-inhibition process” will be set; 

if the process evolution corresponds to curve 

(b), the output “inhibition process” will be 

active.  

 

The network is fully connected and the initial 

weight values are randomly initialized.  

 

4.2.4.2. Neural net for pattern recognition 

applied in alcoholoxydase obtaining with 

the methylotrophic yeast Hansenula 

polymorpha 

 

There are three evolution classes for this 

bioprocess type, due to enzyme accumulation 

in the first region of the exponential phase (eq. 

3.1.3.1). Taking into consideration the 

threshold value (XP), the three categories can 

be reduced to two: standard Gaden evolution 

(if X = XP) and conforming to eq. 3.1.3.1 

otherwise.  

X1

Y1

X5

Y5

Non-inhibition

Inhibition
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Fig. 4.2.8 The digitized evolution curves for the enzymatic hydrolysis of wheat straw; a), b) non-inhibition 

bioprocess; c) d) inhibition bioprocess  

 

Hence, the neural net has 25 inputs, two 

outputs, and two neurons on the hidden layer, 

like the precedent case (see fig. 4.2.9). 

 

 
Fig. 4.2.9 Neural net for pattern recognition (alcoholoxydase production) 

  

The two outputs are assigned to the following 

linguistic labels: “Gaden Equation” if the 

threshold value is equal to biomass 

concentration and “Extended Equation” if the 

values are different.  



S

(c)



S

(b)

S

(a)



S

(d)


X1

Y1

X5

Y5

Gaden Equation

Extended Equation
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An example of the digitized qualitative 

evolution curve for this bioprocess type is 

shown in fig. 4.2.10. 

 

 

Fig. 4.2.10 The digitized evolution curves for an alcoholoxydase production bioprocess; a), b) classical evolution 

(conforming to Gaden eq.); c) d) non-standard bioprocess evolution (extended Gaden eq.) 

 

The training values agree with the pixel 

structure. The net is fully interconnected and 

the weight values are randomly initialized, 

too. 

 

4.2.4.3. Neural net for pattern recognition 

applied in yeast cultivation on simulated 

liquor  

 

The yeast cultivation on simulated liquor 

focuses on inhibitory effect of the acetic acid 

delivered in medium (cf. #3.1.6). Hence, eq. 

3.1.6.2 harmonizes with Monod equation 

taking into consideration the inhibitory effect. 

If the influence is low (inhibitor concentration 

is small, I0), the classical Monod relation is 

advantageous; in proportion as the acetic acid 

concentration increases (but not bigger than 

Ilim) the population dynamic decreases and eq. 

3.1.6.2 is to be appliable.  

 

The neural net contains two outputs in 

agreement with the existence/absence of 

inhibitor.  
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Fig. 4.2.11 Neural net for pattern recognition (yeast cultivation on simulated liquor) 

In the first case eq. 3.1.6.2 is to be used; in the 

second one, Monod relation can be applied. 

The hidden neuron numbers is two, 

conforming to arguments presented above. 

 

Fig. 4.2.12 The digitized evolution curves for yeast cultivation bioprocess; a), b) non-inhibitory evolution; (c) d) 

inhibitory evolution  

 

The training values agree with the pixel 

structure. The net is fully interconnected and 

the weight values are randomly initialized, 

too. 
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4 . 3 .  F U Z Z Y  C O N T R O L  B L O C K  
 

 

4.3.1. Overview 

 

The design of a fuzzy control system arises 

from organization necessity of the human 

expert knowledge. The decisional 

quintessence of the control system is 

determined by the transition from the 

information objective level to the subjective 

one (i.e. the information version level) 

(Srinivas, Chidambaram, 1995). Thus, the 

interest is focussed on human expert 

experience (outlined through fuzzy rules) 

rather than information algorithmic process 

(Jecu, Caramihai, 1996).  

 

Hence, in view of bioprocess specificity, the 

fuzzy control algorithm will be characteristic 

to a specific step evolution of the process 

(Besli et al., 1995). 

 

Generally, fuzzy membership functions are 

the mechanism used by the fuzzy system to 

interface with the outside world (Ramkumar, 

Chidambaram, 1995; Hu, Yuan, 1995). The 

domain of membership function is the set of 

possible values for a given variable and the 

possible output values are the real interval [0, 

1].  

 

In this work, a typical choice for a fuzzy 

membership function was preferred, i.e. the 

linear trapezoidal function. Other function 

shapes, such as gaussian function could also 

be used, but these would increase the 

computational price of the algorithm and 

provide no noticeable performance 

improvement (such functions typically appear 

in systems used for theoretical analysis, where 

their analytical properties, such as 

differentiability, are needed) (Kosko, Isaka, 

1993).  

 

Fuzzy rules combine two or more input fuzzy 

sets and associate an output to them. One 

method of storing and representing fuzzy rules 

is the use of a Fuzzy Associative Memory 

(FAM) matrix. FAM matrices can have 

dimensions higher than two (i.e. the inputs 

number to the fuzzy rules determines the 

dimension). Hence, higher numbers of inputs 

produce “hypercube” FAM matrices. It is 

preferably to use more small FAM matrices 

(two- or three-dimensional) rather than a 

single higher dimensional matrix (Welstead, 

1994), i.e. the system becomes more flexible 

and the computational power necessity is 

lower.  

 

Defuzzification  

 

The defuzzification process is based on 

SLIDE algorithm (Yager, Filev, 1993). 

Assume it is given a fuzzy set F with 

membership function wI defined on the 

discrete universe of discourse X={x1,...,xn}. It 

shall assume that M = Maxi[wi]. The first step 

in the SLIDE method of defuzzification is to 

transform F into E, another fuzzy set defined 

on the same universe of discourse, X. It shall 

denote the membership grades in E as vi. The 

vI’s are derived from the wI’s using the 

following transformation: 

 

T F E
 ,

: ⎯→⎯           4.3.1 

 

where: 

 





−


=





ii

ii

i
wifw

wifw
v

,)1(

,
         4.3.2 

 

Here  and  are parameters of transformation 

such that [0, M], [0, 1]. 

 

The second step in the SLIDE defuzzification 

method is to normalize the sequence of vI’s: 
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It is easily seen that pI’s have the 

characteristics of a probability distribution 

over the support set x1…xn: 

 

1 1
1

) pi

i

n

=
=

            4.3.4 

2 0 1) , ...p i ni  =          4.3.5 

The final step in the SLIDE defuzzification 

procedure is the determination of the 

defuzzified value: 

 

d p xi i

i

=            4.3.6 

 

It is obvious that  and  parameterize the 

family of all defuzzified values defined by the 

SLIDE method. The parameter  can be 

regarded as a level of confidence. Its maximal 

value is associated with the maximal value of 

membership function. Parameter  

characterizes the rejection of the membership 

values under the level of confidence, . For  

= 1, the membership values under  are 

rejected. For  = 0, the membership values 

under level of confidence are totally included. 

It also should be noted that if  will be fixed 

=MaxIwI then as  goes from 0 to 1 the 

SLIDE defuzzified value goes from the COA 

(Center of Area) to the MOM (Mean of 

Maxima) defuzzified values (Lee, 1990).  

 

4.3.2. Formalization  

 

Fuzzy sets are determined by their 

membership functions; in this case trapezoidal 

functions are used.  

 

There are three distinct types of trapezoid 

functions (fig. 4.3.1): those that open to left, 

those that open to right and the “regular” type 

- closed at both ends. Note that the regular type 

does not have to be symmetric. Since the 

trapezoids are the graphs of membership 

functions, the maximum height is always 1. A 

regular trapezoid has three linear segments 

defined by the four points, a, b, c, and d. If b = 

c, the trapezoid becomes a triangle, which is 

also a valid membership function.  

 

The header file FLOGIC.H specifies a 

structure type trapezoid, which contains all of 

the information needed to define the shape of 

a trapezoid. The structure includes an 

enumerative type specifying the trapezoid 

type (left, right, regular) and float values for 

the points a, b, c, and d. The structure also 

includes float fields for the slopes of the left- 

and right-slanting line segments in the 

trapezoid. While this slope information is 

redundant since it can be determined from the 

point values, it is included in the structure to 

save computational time since these values are 

needed every time the trapezoid function is 

evaluated.  

 

Two procedures in the file FLPRCS.C 

facilitate the use of the trapezoid structure 

type. Hence, the procedure init_trapz returns a 

fully initialized trapezoid structure. If 

trapezoid were a C++ class then init_trapz 

would be its constructor.  

 

The C function trapz is the actual trapezoid 

function. It takes a float value and a trapezoid 

structure as its arguments and returns the float 

value that is the output value of the 

mathematical trapezoid function.  

 

The concept of FAM matrix suggests that it 

should logically store fuzzy rules in a 

multidimensional array architecture. The 

number of rows and columns can be adjusted 

in order to accommodate different numbers of 

fuzzy sets per variable. Changing the 

dimensions of a storage array is a major code 

change (particularly in C), not only affecting 

the array architecture itself, but also likely 

effecting changes in the number of “for” loops 

that maneuver through it.  
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Fig. 4.3.1 Different types of trapezoids  

 

An alternative to storing rules in a 

multidimensional array of fixed dimensions is 

to have each rule carry with it index 

information that specifies its location in a 

virtual multidimensional array. With this 

approach, the full array is not allocated; only 

those array entries that are actually used will 

be stored. 

 

The structure type rule in FLOGIC.H defines 

the rules in this way. Hence, the one-

dimensional array inp_index holds the index 

values for the input variables. The one-

dimensional array inp_fuzzy_set holds the 

index values for the corresponding fuzzy sets. 

These are index values that specify the 

location in the virtual FAM matrix. Finally, 

the field out_fuzzy_set specifies the index 

value for the output.  

The main advantages of this implementation 

type are: 

• The ability to handle multiple lower-

dimensional FAM matrices 

simultaneously; 

• It is not necessary to specify all of the 

FAM matrix entries; 

• Very compact implementation of the 

defuzzification procedure. 

 

The structure type fuzzy_system_rec in the 

header file FLOGIC.H contains all of the 

information needed to completely define a 

fuzzy system, i.e. membership functions, rules 

and output values.  

 

Fig. 4.3.2 Organization of files in the fuzzy control system  

 

The procedure fuzzy_system in FLPRCS.C 

takes the fuzzy system structure and an array 

of input values and returns the defuzzified 

output value according to the scheme 

presented above (SLIDE algorithm). 

 

1

a b
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4.3.3. Implementation of fuzzy rules  

 

1. Following the demonstration 

presented in #3.1.4, the enzymatic hydrolysis 

rate is nonlinearly dependent of substrate 

concentration (eq. 3.1.4.1). Hence, the fuzzy 

rules take into account the substrate 

consumption rate and the enzymatic 

hydrolysis rate. Considering a fed-batch 

process, the substrate feed will be done in 

correlation with hydrolysis rate deviation from 

the optimum value, which is analytically 

determined. The conceptual control structure 

is shown in fig. 4.3.3. 

 

 

Fig. 4.3.3 Control structure of the enzymatic hydrolysis bioprocess  

 

The fuzzy control input variables are substrate 

concentration and enzymatic hydrolysis rate 

error. The corresponding FAM matrix is 

presented below. The notation significance of 

fuzzy labels is Z= Zero, PS= Positive Small, 

PM= Positive Medium, PB= Positive Big  

 

 

Fig. 4.3.4 Fuzzy Associated Matrix for an enzymatic 

hydrolysis bioprocess 

It can be seen that negative errors don’t exist 

(i.e. the real value can not exceed the set-point 

value) and there are only positive substrate 

concentrations (S  0). Moreover, some 

elements of FAM matrix cannot be defined 

due to the uncertainty regarding these cases. In 

all these circumstances, the process advances 

until a well-defined state.  

 

2. As shown in #3.1.3, alcoholoxydase 

obtaining with the methylotrophic yeast 

Hansenula polymorpha is based on 3.1.3.1 

equation. In view of the fact that product 

formation rate is greater than Gaden’s case if 

cell concentration is smaller than the threshold 

value, product concentration (P) incresing can 

be performed through a set-point value XSP < 

Xp and substrate concentration control. 

Moreover, the process will be stopped if the 

cell concentration exceeds the threshold value, 

(X > XP). The control structure is presented in 

fig. 4.3.5: 
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Fig. 4.3.5 Fuzzy control structure for alcoholoxydase production 

 

The bioprocess output is dependent on 

substrate and biomass concentration, i.e. 

),( SXf
dt

dP
= , but only by the substrate 

addition the product rate is controlled. 

 

The FAM matrix (fig. 4.3.6) can be developed 

in two steps: firstly, global process evolution 

was investigated; secondly, performance 

improvement was considered. The notations 

are the same; in addition we have: NB= 

Negative Big, NM= Negative Medium, NS= 

Negative Small, N = Negative; P = Positive.  

 

 

 

 

 
 

 

 

a) b) 

Fig. 4.3.6 Fuzzy Associated Matrix for an alcoholoxydase production bioprocess: a) first case; b) second case 

 

3. Fuzzy control of yeast cultivation on 

simulated liquor (cf. #3.1.6) is based on 

substrate addition control, considering the 

specific growth rate dependence vs. substrate 

and inhibitor concentrations,  = f(S,I), 

conforming to eq. 3.1.6.2. Hence,  deviation 

from the optimum value (analytically 

determined) is due, on one hand, to inhibitor 

accumulation and on the other hand, to 

substrate concentration changes. Hence, a 

control structure is proposed (fig. 4.3.7), 

which can optimize cell growth and minimize 

inhibitor influences through substrate 

concentration. 
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Fig. 4.3.7 Fuzzy control structure for yeast cultivation on simulated liquor 

 

The inputs of the fuzzy controller are specific 

growth rate error and inhibitor concentration 

and the output corresponds to the substrate 

concentration. From a technological point of 

view, the specific growth rate (implicitly) 

offers information on substrate concentration. 

Hence, the following FAM matrix can be 

proposed (fig. 4.3.8). 

 

As can be seen, specific cases (e.g. big 

inhibitor concentration with zero error) cannot 

be defined, conforming to real process 

behavior. Moreover, “zero” substrate addition 

is a “waiting” command, in order to check 

further process evolutions.  

 

 

 
Fig. 4.3.8 Fuzzy Associated Matrix for yeast 

cultivation on simulated liquor  
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4 . 4 .  F I L T E R  B L O C K  
 

 

The control bioprocess procedures are 

generally built based on quantitative approach 

(i.e. correlation set-up) and starts with the 

measured/calculated process variables.  

 

Hence, for an optimal control, it is necessary 

to filter the measured data, in order to 

eliminate the (inherent) mistaken information. 

The most possible causes that induce the data 

modification are: 

• Signal lost on transmission lines; 

• ADC (Analog/Digital Converter) 

defections; 

• Measurement equipment errors. 

 

These wrong data can generate undesirable 

phenomena in the information base post-

processing: 

• Increasing of the general level of noise; 

• Induction of frequency false components 

via spectral density. 

 

Consequently, it is necessary to detect and 

eliminate the wrong results from the 

bioprocess data sets.  

 

Hence, it can be considered that correct data 

have a smooth evolution and the wrong values 

are deviations from this hypothesis. So, the 

following sequences can be defined: 

• [ ( )]X i 2  - The sequence X(t) is firstly 

smoothed and secondly squared; 

• X i2 ( )
_ _ _ _ _ _

 - The sequence X(t) is firstly 

squared and secondly smoothed. 

 

The first step is to generate the dispersion-

actualized values: 

 

s i X i X i2 2 2( ) ( ) [ ( )]
_ _ _ _ _ _

= −          4.5.1 

 

and to calculate the standard deviation. 

 

The second step is to test the next value of data 

sequence, X(i+1); this one is admitted as real 

(exact) value if: 

 

X i K X i X i K K( ) ( ) ( ) , ( , )−  +  + 1 3 9  

4.5.2 

 

If the above condition isn’t performed, the 

value X(i+1) will be replaced with the 

following expression (equivalent with a linear 

extrapolation): 

 

( ) ( ) ( )X i X i X i+ = − −1 2 1         4.5.3 

 

The procedure must be supplemented with an 

additional condition that restricts the 

successive number of extrapolations (i.e. a 

permanent extrapolation must be avoided). On 

that account, the extrapolated values can take 

additional direction to real trajectory, after the 

detection of wrong value series (and thus, the 

correct data will be rejected).  

 

Another filter procedure is based on Tukey’s 

theory. This one considers that is more 

comfortable to primarily generate an 

estimation of the smooth data evolution and 

then to reject the wrong values. The procedure 

utilizes the theorem that considers that median 

value of a data sequence represents a robust 

estimation. The algorithm is given below: 

 

1. The sequence X'(i) is built firstly, based on 

median value of the sequence X(1)....X(5). 

This will be X'(3). X(1) is removed and 

X(6) added to data sequence. The new 

median value will be X’(4). The procedure 

goes ahead till all data will be 

covered.Note that the sequence X’(i) will 

have four elements less than initial 

sequence; 

2. The sequence X''(i) will be built based on 

X’(i) succession, like the precedent step; in 

this case the element number of the data 



PART 

FOUR 

D E S I G N  O F  T H E  B I O P R O C E S S  I N T E L L I G E N T  C O N T R O L  

S T R U C T U R E  

 

 24 

set which determines the mean value is 

three; 

3. Finally, the sequence X”’(i) will be 

calculated in agreement with the following 

relation: 

 

 =  − +  +  +X i X i X i X i( ) ( ) ( ) ( )
1

4
1

1

2

1

4
1  

4.5.4 

Note that this operation is comparable to a 

Hamming smooth;  

4. The difference X(i)-X'''(i) is analyzed to 

decide if X i X i k( ) ( )−   . Note that the 

human expert fixes k value. If the above 

relation is true, X(i) is replaced with an 

interpolated value.  

 

Implementation 

The two-algorithm implementations are 

realized through two C-functions, NETED.C 

and TUKEY.C, which agree with the 

mathematical algorithms.  

 

The algorithm selection is performed by the 

human operator through an user interface. The 

filtered data are stored in a working file.  
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4 . 5 .  S E T  P O I N T  E S T I M A T I O N  B L O C K  

 
 

The conceptual structure of an intelligent 

control system based on hybrid techniques 

implies the integration of contributions that 

the bioprocess control using a priori model 

can offer, i.e. analytical determination of 

maximum/minimum values according to 

corresponding model (Chouakri, et al., 1994; 

Chouakri, et al., 1995). 

 

After the values were determined (Karim, 

Rivera, 1992), they are transferred to the 

control block as set-point values. 

 

4.5.1. Enzymatic hydrolysis bioprocess of 

wheat straw  

 

In agreement with #4.2.4.1, this kind of 

bioprocess is able to advance either on 

classical equation (Michaelis & Menten) or on 

the law defined by eq. 3.1.4.1. The neural 

network for pattern recognition performs the 

model selection. Hence, the set-point 

estimation block must 

• Establish the value of specific reaction rate 

(max), if the bioprocess is non-inhibitory; 

• Determine the values of specific reaction 

rate and (corresponding) substrate 

concentration, if the bioprocess is 

inhibitory. 

 

In the first case, the determination of max 

value can be performed through LS (Least 

Square) method, because Michaelis & Menten 

model agrees with parameter linear 

dependence. The algorithm can be 

implemented via a C-function, CMMP.C. The 

input parameters are substrate concentration 

and specific reaction rate and output 

parameters are considered max and Km. This 

function calls the UT library (see Annex) for 

matrices operations.  

 

In the second case, parameter estimation is 

achieved through the Gradient Conjugates 

method.  

 

The algorithm can be implemented via two 

files, CG.H (header) and CGPROCS.C. The 

function CGPROCS.C must find the 

minimum/maximum point of a function whose 

definition is passed via the parameter obj_fn. 

The final vector solution is returned through 

the parameter weights and the value of the 

objective function is returned through the 

parameter obj_value. The procedure stops 

either the imposed error tolerance (error_tol) 

is exceeded or the solution is successfully 

found. 

 

4.5.2. Alcoholoxydase obtaining with the 

methylotrophic yeast Hansenula 

polymorpha 

 

Conforming to #3.1.3, the alcoholoxydase 

production (enzyme accumulation) is 

characteristic to the early exponential growth 

phase. Hence, the corresponding model is the 

Gaden equation (if the threshold value, Xp is 

equal to the cell concentration, X), or 3.1.3.1 

equation in all other cases.  

 

Therefore, the set-point estimation block must 

find the cell concentration, X. For this 

purpose, the cell concentration is passed to the 

control block, incremented with 1%, till the 

threshold value is reached.  

 

The determination of the cell concentration via 

equation 3.1.3.1 is performed through Runge-

Kuta method, at each sampling period. The 

integration procedure is defined in distinct file, 

RK.C 

 

4.5.3. Yeast growth on simulated liquor.  

 

Following the ideas presented above (cf. 

#3.1.6), the yeast growth on simulated liquor 

occurs in accordance with specific conditions 

(i.e. acetic acid accumulation). In agreement 

with eq. 3.1.6.2, biomass growth can cumulate 

via the classical Monod model (in the inhibitor 

absence) or through a =f(S,I) equation (in the 
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other case). The neural network for pattern 

recognition performs the model selection. The 

set-point estimation block must 

• Establish the value of specific growth rate 

(max), if the bioprocess is non-inhibitory 

(I0); 

• Determine the values of specific growth 

rate and (corresponding) substrate 

concentration, if the bioprocess is 

inhibitory (cf. eq. 3.1.6.2). 

 

In the first case, the determination of max 

value can be performed through LS (Least 

Square) method, because Monod model agrees 

with parameter linear dependence. The 

algorithm can be implemented via the C-

function, CMMP.C. The input parameters are 

substrate concentration and specific growth 

rate and output parameters are max and KS. 

This function calls the UT library (see Annex) 

for matrices operations.  

 

In the second case, parameter estimation is 

achieved through the Gradient Conjugates 

method, presented above.  
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4 . 6 .  A S 4 0 0  D A T A B A S E  
 

 

4.6.1. Overview 

 

AS400 systems are well known for its ease for 

use, open standards (whereby the system 

architecture and applications allow for 

expansion and scalability) and security (which 

helps for the acceptance of information 

technology) (Abergel, 1993, Rambaud, 1989). 

The bioprocess databases designed on this 

computer type offer the advantages of a large-

scale information storing, which is directly or 

through a client/server structure available. The 

security level is based on access control 

(specific information should only be 

accessible by authorized personnel; controlled 

access allows persons with the required 

authorization to read and alter protected data 

files) and data integrity (it can be ensured that 

data are not changed by unauthorized persons 

after their transmission) (Caramihai et al., 

1996).  

 

The main advantages of this kind of database 

are: 

• Direct data access; 

• Maximum operation flexibility; 

• Easy to upgrade the system. 

 

The AS400 database is configured as physical 

and logical files. The logical files are based on 

the information stored by physical files, which 

are structured conforming different criteria 

(IBM, 1996). When a physical file is created, 

the key fields, the record name and the field 

description must be defined. Furthermore, the 

data type (packed, alphanumeric, etc.) must be 

determined in order to fix the database 

consistency.  

 

If the physical files hold data, the logical files 

arrange the information by taking into 

consideration different criteria (keys). Hence, 

the main logical file characteristics are (Pichat, 

Bodin, 1990):  

• The data can be treated conforming to 

operator option; 

• The information selection (in the physical 

file) is directly performed; 

• A logical file can joint different physical 

files for better data use. 

 

The physical/logical files can be accessed 

through display files and reported through 

printer files (IBM, 1996). 

 

A printer file consists of more formats. The 

ordinary format is a printing line. Each format 

consists of zone description (i.e. length, 

attribute, key). The entire data ensemble is 

stored in a PRTF source file.  

 

Like the printer files, the display files consist 

of more formats. In this case, the ordinary 

format is the screen line. Each format consists 

of zone description (i.e. length, attribute, key). 

The entire data ensemble is stored in a DSPF 

source file. 

 

4.6.2. Hard & soft configuration  

 

The following hardware configuration is 

necessary for the AS400 database design in a 

client/server structure: 

• AS400 computer with OS400/305 

operating system; 

• Novell network server; 

• PAC network server; 

• Eight workstations. 

 

This configuration assumes a soft 

development on the workstations, program 

generation on PAC server and program 

compiling on AS400. 

 

The programs were developed in PACBASE 

(version 8.0.2, 1995; copyright GNA/France). 

Hence, the procedures were designed in PAC; 

the source were generated in COBOL, 

transferred on AS400 and compiled.  

 

The access to the system resources can be 

made under OS400 control or under 
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client/server configuration (i.e. through 

RUMBA, under Windows95 operating 

system). 

 

The PACBASE developing medium is a great 

resources consumer on account of special 

predefined functions.  

 

The PAC programs run only on AS400 

systems. There are three program types: 

• Display programs (TP): the operator can 

directly bring up to date the database; 

• Batch programs (B): the operator can 

indirectly bring up to date the database 

(periodically or by request); 

• Report programs 

 

These programs can be launched via operator 

request or through CL routines (periodically). 

 

The AS400 system communicates with the 

intelligent control system through a specific 

ODBC.  

 

4.6.3. Design of database. A case study.  

 

4.6.3.1. Database for yeast and fungi 

cultivation  

 

Following the ideas presented above (cf. 

#3.1), the main parameters for a yeast or fungi 

cultivation bioprocess are pH, dissolved 

oxygen, stirred speed and pressure (for 

mechanical reactors), substrate concentration, 

dry weight (as measurement of cell 

concentration), specific growth rate and 

product concentration (product formation 

rate). The corresponding database will include 

the specific physical files corresponding to 

these parameters, logical files (for direct 

access) and special joint files. The files 

standardization is shown below: 

 

XX81- physical file; 

XX01- main logical file; 

XX02, XX03...- secondary logical files; 

JJ...- joint files. 

 

Hence, the following physical files were 

created: 

TE81 – temperature;  

PH81 - pH; 

OX81 - oxygen; 

DE81 – air flow; 

TV81 – motor speed; 

SP81 - pressure; 

SB81 – substrate concentration; 

SU81 – cell concentration (dry 

weight); 

MU81 – specific growth rate, ; 

PR81 – product concentration. 

 

Each record has the following structure (fig. 

4.6.1): 

• Experiment type: specifies the experiment 

type: biomass growth, product formation, 

etc. ; format 10X; 

• Operation mode: defines the operation 

mode, i.e. batch, fed-batch or continuous; 

format 5X; 

• Reactor type: specifies the type of reactor: 

stirred speed reactor or air-lift reactor; 

format 5X; 

• Microorganism type: names the 

manipulated microorganism (Hansenula 

polymorpha, Candida, etc.); format 10X; 

• Environment type: specifies the culture 

medium type; format 10X; 

• Inoculum type: specifies the manipulated 

inoculum quantity; format S999; 

• Experiment number: format 9(4); 

• Date: defines the date of experiment; 

format YYYYMMDD; 

• Time: specifies the measurement instant; 

format HHMMSS (9(6)); 

• Value: holds the measured parameter 

value; format S9(4)V9(4). 
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Fig. 4.6.1 Data record for yeast and fungus strain  

 

Each physical file has various associated 

logical files: 

 

XX01 – main logical file (key structure: 

1/2/3/4/5/6/7/8/9/); 

XX02 – logical file, key: 3/1/2/4/5/6/7/8/9/; 

XX04 - logical file, key: 5/1/2/3/4/6/7/8/9/ 

XX05 - logical file, key: 4/2/3/5/6/7/8/9/; 

XX06 - logical file, key: 7/; 

 

Moreover, the listed joint file were created for 

better information organization:  

JO01 – identical key with XX01; 

JO02 - identical key with XX02; 

JO03 - identical key with XX03; 

JO04 - identical key with XX04; 

JO05 - identical key with XX05; 

JO06 - identical key with XX06. 

 

These joint files were constructed through the 

attachment of the following logical files: pH, 

oxygen, biomass, substrate and product 

concentration.  

 

4.6.3.2. Database for enzymatic hydrolysis 

bioprocess 

 

In this case the following parameters are 

monitored: temperature, pH, stirred speed, 

specific reaction rate (), substrate and 

product concentrations. The corresponding 

physical and logical files are shown below: 

XX71 – physical file; 

XX11 – main logical file; 

XX12, XX13,..., - secondary logical files; 

JO.., - joint files. 

 

Therefore, the following physical files were 

created: 

TE71 - temperature; 

PH71 - pH; 

TV71 – stirred speed; 

NU81 – specific reaction rate (); 

SB71 – substrate concentration; 

PR71 – product concentration. 

 

Each record has the following structure (fig. 

4.6.2): 

• Operation mode: defines the operation 

mode, i.e. static or stirred; format 8X; 

• Strain: specifies the strain type (e.g. 

(Aspergillus, Trichoderma, etc.); format 

12X; 

• Substrate type: consist of the type of 

substrate; format 14X; 

• Experiment number: format 9(4);  

• Date: defines the date of experiment; 

format YYYYMMDD; 

• Time: specifies the measurement instant; 

format HHMMSS (9(6)); 

• Value: holds the measured parameter 

value; format S9(4)V9(4). 

 

 
Fig. 4.6.2 Data record for enzymatic hydrolysis bioprocess  

 

Each physical file has various associated 

logical files: 

XX11 – main logical file (key: 1/2/3/4/5/6/); 

XX12 – logical file (key: 2/1/3/4/5/6/); 
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XX14 – logical file (key: 4/). 

 

In this case the following joint files were 

created by attachment of substrate, product 

and specific reaction rate logical files: 

JO11 - identical key with XX11; 

JO12 - identical key with XX12; 

JO14 - identical key with XX14, 

 

4.6.3.3. Database for yeast growth on 

simulated liquor  

 

Following the ideas presented in #3.1.6, the 

main parameters for yeast cultivation on 

simulated liquor bioprocess are temperature, 

pH, air flow, dissolved oxygen, inhibitor and 

substrate concentration, specific growth rate, 

cell concentration (dry weight). The 

associated physical and logical files are:  

 

XX61 – physical file; 

XX21 – main logical file; 

XX22, XX23… – secondary logical files. 

 

The following physical files were created: 

TE61 - temperature; 

PH61 - pH; 

DE61 – air flow; 

OX61 – dissolved oxygen; 

IN61 – inhibitor concentration; 

SB61 – substrate concentration; 

SU61 – cell concentration (dry 

weight); 

MU61 – specific growth rate. 

 

Each record has the following structure (fig. 

4.6.3): 

• Environment type: specifies the culture 

medium type; format 10X; 

• Inoculum type: specifies the manipulated 

inoculum quantity; format S999; 

• Experiment number: format 9(4);  

• Date: defines the date of experiment; 

format YYYYMMDD; 

• Time: specifies the measurement instant; 

format HHMMSS (9(6)); 

• Value: holds the measured parameter 

value; format S9(4)V9(4). 

 

 
Fig. 4.6.3 Data record for yeast growth on simulated liquor  
 

Each physical file has associated the following 

logical files: 

XX21- main logical file (key: 1/2/3/4/5/); 

XX22 – secondary logical file (key: 

3/1/2/4/5/). 

 

In this case no joint file is created. 

 

This software, elaborated under PACBASE 

must supervise and edit (on operator request) 

the database elements. Hence, the operator can 

read (through AS400 system) the data files, in 

agreement with custom configurations or 

write different file information to printer. The 

direct data access (creation, modification, and 

delete) is prohibit at this level. Only the system 

administrator can operate on the data structure.  
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CONCLUSIONS 

 

In this chapter, the component blocks of an intelligent control structure were designed. Three 

bioprocess types were taken into consideration: enzymatic hydrolysis of a lignocellulosic substrate 

(wheat straw); alcoholoxydase obtaining with the methylotrophic yeast Hansenula polymorpha; yeast 

cultivation on simulated liquor. Process class heterogeneity directs characteristic implementations; 

each case was treated separately, for all blocks. 

 

Hence, the Filter block, identical for all cases, must “clean” input data, according to an imposed 

criterion.  

 

The Neural Net for Parameter Estimation esteems the parameter values of the controlled bioprocess 

in agreement with a priori information transferred to expert system and the process evolution curve. 

 

The Neural Net for Pattern Recognition must identify bioprocess type based on digitized standard 

curves, as part of a general process class, which was configured through a priori information. 

 

The Fuzzy Control Structure controls bioprocess behavior, in agreement with specific rules 

established by the human expert. 

 

The Expert System manages the general functionality of the control system. At this level, a specific 

information database was created compatible with process particularities.  

 

Moreover, for each block of the intelligent control structure, the soft implementations and algorithm 

structures were specified  

 

Finally, an AS400 database was built, in agreement with each bioprocess type.  

 

 

 

 

 

 

 


