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Part two 

 

BIOPROCESS CONTROL 

STATEMENT 

 

In the first part of this section, the most usually literature models regarding the 

bioprocess kinetic will be presented. Hence, based on a general admitted 

classification, different biomass growth and product models in addition with 

bioprocess parameter evolution will be analyzed and the conceptual limitations (if 

necessary) will be set up. In #2.2, the general control objectives will be established, 

with a special emphasize on the economic performance criteria. Finally, a general 

presentation on the control procedures will be made, and representative point of 

views will be shown in order to point out the state of the art in the field and the 

outcoming tendencies.  
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2 . 1 .  B I O P R O C E S S  M O D E L I N G  

 
 

The knowledge about bioprocess behavior and 

modes of operation (Doran, 1986; Young, 

Bungay, 1973), allows the metabolic routes 

considerations in view of bioprocess optimal 

control. If that knowledge is carried out in 

different kinetic equations, than: 

• The bioprocess mathematical 

representation can be the basis for 

adequate optimization and control 

technique applications (Moser, 1992; 

Wucherer et al., 1992); 

• The model provides the necessary 

information about the characteristics of the 

chosen procedure (Chen, Bastin, 1991; 

Bastin et al., 1992); 

• A good model synthesizes the physiology 

and the genetic determinations of the 

specified microorganism. Hence, this is 

the best technique to predict the process 

efficiency (Mosrati et al., 1991). 

 

The mathematical models, which describe the 

living cell evolution, must show the complex 

biosystem attributes, must be as possible 

extensive and non-speculative and must be 

based on cell’s biochemistry (Freyer et al, 

1989). Hence, the bioprocess model must be 

an acceptable compromise between the 

presentation of detailed internal processes (i.e. 

with considerable number of parameters) and 

the consideration of a short parameter number, 

easy to use and estimate (Ljubenova, Ignatova, 

1994). 

 

Based on living system specificity, the 

bioprocesses are characterized by non-

linearity, multivariability and parameter time 

variance (Eiki, Osono, 1990; Cushing, 1991; 

Stanbury, Whitaker, 1994; Kurtanjek, 1992). 

Consequently, the variables, which describe 

the bioprocess evolution, demonstrate a strong 

interdependency, which make impossible the 

correlative influences study (Turner et al., 

1988). The general equation presented below: 

 

X f X S O pH T t
•
= ( , , , , ,..., )2

 

 

is only a theoretical assumption.  

 

The attempts to realize such global models 

were not successful (firstly, due to the 

impossibility to measure on-line the great 

number of bioprocess parameters, and 

secondly, due to the high degree of 

complexity, which characterizes the cell 

mechanisms). The deadlock was surmounted 

by the implementation of the models 

depending of few variables, or by the use of 

the linear models for restricted sections 

(periods of time) (Stanbury, Whitaker, 1994). 

This last one is functionally taking into 

account that the bioprocesses are generally 

characterized by high time constants (hours or 

tens hours), hence, the bioprocess should be 

considered quasi-linear (Stanbury, Whitaker, 

1994). 

 

A general review of the bioprocess kinetic 

models was done by Moser (Moser, 1988). 

According to his classification, for the 

modeling of the biosystems, the deterministic 

models are preferred to the probabilistic ones. 

Several kinds of deterministic models were 

used (Moser, 1988): 

• Unstructured models – the cells are 

considered as black box. In these 

conditions the cell concentration is the 

most important parameter and the cell, as 

an entity, is significantly influenced by the 

environmental conditions. 

• Structured models – based on the 

assumption of the cell structure, 

considered at the level of the main 

chemical components, or having in mind 

the cellular morphology (age, dimension, 

shape etc.). 

 

From a point of view neglecting the 

recognition/omission of the above 
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classification, Moser has proposed another 

classification (Moser, 1988): 

• Unsegregated (continuous, distributive) 

models – which consider individual 

identical cells; 

• Segregated (corpuscular) models – based 

on individual cells consideration, but with 

distinctive features.  

 

The segregated models are useful to describe 

biosystems characterized by average states. If 

the biosystem contains cells obtained after 

genetically modification, some characteristics 

are different from a cell group to another, and 

as a consequence, the correlation with the 

product formation is more complex. 

 

The simplest and most used examples are the 

unstructured, unsegregated models (e.g. the 

Monod model for the microbial growth). Only 

structured models are able to predict the 

biological phenomena in unequilibrated 

conditions of growth (the growth is 

equilibrated for a period of time if each 

extensive property of the biosystem is 

proportional by increasing) (Campbell, 1977). 

The Monod model is applied only for the 

biosystems with equilibrated growth (e.g. the 

exponential growth in batch cultures and the 

steady state phase in continuous cultivation). 

 

Finally, the postulates defined by Edwards and 

Wilke (Edwards, Wilke, 1968) in the 

bioprocess-modeling domain establish the 

biological kinetic norms; hence, a biological 

model: 

• Must be able to represent all culture 

phases; 

• Must be enough flexible to approximate 

different data types without the insertion 

of significant distortions; 

• Each model parameter must have a physic 

significance; 

• Must be continuously derivable; 

• The parameters must be easy to evaluate; 

• The model must be easy to operate, once 

the parameters evaluated. 

2.1.1. Unstructured and unsegregated 

models 

 

Conforming to the scientific literature 

(Kossen, Oosterhuis, 1985), an unstructured 

model can be conceived as black box and the 

structured one as gray box. A gray box is build 

as a black box gathering in addition with their 

relationships, which define the biosystem 

structure. The unstructured mathematical 

models can be: 

• Constitutive equations: 

• Kinetic equations. 

• Transport equations. 

• Thermodynamic equations. 

• Balance equations (stoichiometry) 

 

2.1.1.1. Balance equations 

 

The balance equations were utilized (Cooney 

et al. 1977) to design an algorithm to keep up 

the monitoring of bioprocess performance 

indicators. The main parameters X, YX/S and 

YX/O were determined using the 

stoichyometric relationship relating to product 

formation and growth and by the continuous 

monitoring of the oxygen flow rate, OUR, 

CPR and of the carbon and natrium source 

consumption. The estimation algorithm was 

tested on a batch process of yeast 

(Saccharomyces cerevisiae) growth using 

glucose substrate. 

 

Through the next step, the proposed algorithm 

was used for optimal control of the feed rate in 

a fed-batch bioprocess in order to increase the 

substrate consumption yield (YX/S = 0,5) and 

to maintain a high value of the cell mass 

productivity (dX/dt = max). 

 

2.1.1.2. Unstructured kinetic models for 

growth depending on substrate 

concentration  

 

Generally speaking, one can consider that the 

specific growth rate (i.e.  =
1

X

dX

dt
) is the key 

variable for cell growth, substrate 

consumption and product formation (Bastin, 

Dochain, 1990). The specific growth rate is 
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time dependent and, moreover, is dependent 

on different physical, chemical and/or 

biological parameters (i.e. substrate 

concentration, S, cell concentration, X, 

product concentration, P, pH, temperature, T, 

dissolved oxygen concentration, pO2, and 

different inhibitors, I).  

 

Conforming to literature assumptions 

((Bastin, Dochain, 1990), the specific growth 

rate dependence upon different process 

parameters can be designed as follows: 

       ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )t S X P pH T C I=          2.1.1.2.1 

 

a) =(S) Kinetic models with growth 

limitation through substrate concentration 

(without inhibition)  

 

The Monod equation (Monod 1942, Monod, 

1949) is the most used relation from this 

category. It is empirically derived from the 

Michaelis & Menten equation (Michaelis, 

Menten, 1913; Sakamoto, 1986) and can be 

considered as a formal kinetic equation 

(Moser, 1988; Sivakumar et al., 1994; Luong, 

1987; Han, Levenspiel, 1988): 

 




( ) maxS
S

K SS

=
+

    2.1.1.2.2 

 

where : max = maximum specific growth rate 

  [1/h] 

 KS = saturation constant [g/L] 

 

The following figure shows the typical 

dependence of the specific growth rate upon 

substrate concentration, without inhibition, 

conforming to Monod equation (kinetics with 

saturation). 

 

Fig. 2.1.1.1 =(S) dependence, cf. Monod law 

Moreover, the substrate consumption rate is: 

 

q
q S

K S
S

S

S

=
+

max      2.1.1.2.3 

 

These dependencies are linked together 

through the yield coefficient, YX/S, 

conforming to the following expression: 

 

Y
X

S

r

r

dX

dS q
X S

X

S S

/ = = = =





   2.1.1.2.4 

 

Other models were proposed alternatively. 

Some of they are presented below: 

• Teissier equation (Teissier, 1936): 

 ( ) ( )maxS e

S

KS= −
−

1    2.1.1.2.5 

 

 

Fig. 2.1.1.2 =(S) dependence cf. Teissier equation 

• Moser equation (Moser, 1988): 




( ) maxS
S

K S

n

S

n
=

+
    2.1.1.2.6 

through analogy with a Hill kinetic (n>0) 
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Fig. 2.1.1.3 =(S) dependence cf. Moser equation 

• Blackman equation (Blackman, 1905): 












=

m

m

m

KtSif

KtSiftS
K

)(

)()(

max

max





   2.1.1.2.7 

 

• Powell equation (Powell, 1958); the 

influence of cell permeability, substrate 

diffusion and cell dimensions are showed 

through KD parameter: 

 ( ) maxS
S

K K SS D

=
+ +

   2.1.1.2.8 

 

Fig. 2.1.1.4 =(S) dependence cf. Powell equation 

 

Conforming to literature references, the 

Monod kinetic slowly tills to the asymptotic 

value; i.e. it fit not well the experimental data, 

in simplest cases. Hence, the Teissier and 

Blackman kinetics represent better the data 

evolution because the saturation level is faster 

attempted. 

 

There are also some models, which utilize the 

substrate concentration in more complex 

structures. Hence, Verhoff (Verhoff et al., 

1972), introduces two steps in the cell 

behavior: assimilation and ingestion, but the 

resulting equation is too complex. Moreover, 

Nyholm (Nyholm, 1976), introduces a dual 

function for substrate utilization: consumption 

(including assimilation and desassimilation in 

the liquid phase) and growth (substrate 

utilization for growth): 

 

S S S
k

e

k

a
e radlim deg⎯ →⎯⎯ ⎯ →⎯⎯    2.1.1.2.9 

 

where Se is the substrate utilized for growth 

and Sa the substrate used for consumption. The 

growth rate is linked to the intracellular 

concentration of limiting substrate (Sint/X) and 

to preserved substrates (i.e. inorganic ions or 

vitamins, which are not decomposed through 

cell metabolism): 

 

 = = −

S

X
dS

dt

r rS Se rad

int

int
lim deg

  2.1.1.2.10 

 

This kinetic model has a practical application 

in the wastewater treatment field. 

 

One of the most important objectives for 

developing a general kinetic model is to 

establish a conceptual basis for 

microorganism growth description (O’Neil, 

Fyeratos, 1986). Therefore, the general 

dependence of the cell growth upon substrate 

concentration can be considered (Neubert et 

al., 1984) as a difference max - . Hence, 

Konak kinetics (Konak, 1974) can be taken 

into consideration: 

 

d

dt
k p
 = −( )max              2.1.1.2.11 

 

where: k = kinetic constant  

 p = reaction order  
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This equation designates an analogy with the 

well-known power law, which is utilized in the 

chemical kinetics field. If the relative growth 

rate notion (in a biological sense) is 

introduced: 

 

rrel =


max

              2.1.1.2.12 

 

then equation (2.1.1.2.11) can be written:  

 

d

dS
k p p









max

max

max

( )= −−1 1            2.1.1.2.13 

 

Konak has demonstrated that this equation can 

be reduced to a Monod kinetic (for p = 2) and 

to a Teissier kinetic (for p = 1). An attractive 

dependence between max and KS can be 

written: 

 

K
k

S =
1

max

              2.1.1.2.14 

 

Based on above (differential) equations, Kargi 

and Shuler (Kargi, Shuler, 1979) has obtained 

the following relationship: 

 

d

dS
K m p



 






max

max max

( ) ( )= −1       2.1.1.2.15 

 

where K, m, p  = constants 

 

Meanwhile, the general equation (2.1.1.2.15) 

can be reduced to the following simple 

models: 

Table 2.1.1 Specific cases for eq. 2.1.1.2.15 

Model K m p 

Monod 1/KS 0 2 

Teissier 1/KS 0 1 

Hill-

Moser 

n/KS
1/n 1-1/n 1+1/n 

 

b) =(X,S) The influence of cell and 

substrate concentrations upon the specific 

growth rate,   

 

Because the dependence =f(X) also involves 

(Yamane, 1993) a dependence upon the 

substrate concentration, there are few models 

which express a double influence; the most 

commonly being written as  = f(X,S). 

 

From the cell growth point of view (Chattaway 

et al., 1992), the culture evolution rate 

decreases if the cell concentration increases 

(Mulchandani, Luong, 1988; Matanguihan et 

al., 1994). A simple kinetic model which 

describes these situations was proposed by 

Verhulst (Verhulst, 1845) through a linear 

dependence: 

 

 ( ) ( )maxX k Xx= −1             2.1.1.2.166 

This model is also named the growth logistic 

model (fig.2.1.1.6). 

 

 

Fig. 2.1.1.5 =(X) dependence cf. Verhulst equation 

 

Meyrath (Meyrath, 1973) introduced a more 

realistic equation, which defines the growth 
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limitation through substrate concentration. 

This model is based on Monod kinetic: 

 

 ( , ) maxX S

S
X

Y

K S
X

Y
S

=

−

+ −

0

0

            2.1.1.2.17 

where Y = the substrate/cell yield. 

 

Based on the above model, the Verhulst – 

Pearl kinetic was proposed: 

 

N N t

N t

m N tx

=

=
+ −

0

0

0 0

0

0

0 1

exp( )

exp( )

(exp( ) )

max

max max

max max



 

 

     2.1.1.2.18 

 

The most known model in the related field ( 

= f(X,S) is the Contois (Contois – Fujimoto) 

equation (Contois, 1959): 

 

 =
+

max

S

K X SX

             2.1.1.2.19 

 

As it can be seen, if S = constant, the only 

dependence remains  = f(X).  

 

Kono and Asai (Kono, Asai, 1968) built a 

growth equation based on chemical kinetic 

concepts. Hence, a growth consumption 

activity coefficient  was introduced. This 

coefficient was redefined by Bastin as 

apparent growth activity coefficient.  

 

( )X KX=               2.1.1.2.170 

 

where KX = growth rate constant (has 

different values depending on the growth step 

in a batch culture); 

  =  0, induction phase; 

  = , cu 0 <  < 1, transition phase, 

   = t; 

  = 1, exponential phase 

The basic idea of Kono was a general growth 

equation:  

 

dX

dt
k k C C k Ci j i j= −1 2 1 2 3 3             2.1.1.2.21 

 

where: C1 = limiting substrate concentration 

 C2 = co-substrate concentration; 

 C3 product concentration; 

 Xcrit = critical cell concentration. 

 

The reaction order changes if X = Xcrit. Hence, 

i = 1 and j = 0 if X < Xcrit, i = 0 and j = 1 if X 

> Xcrit. 

 

Other corresponding interesting kinetics are 

presented below: 

• Nihtila and Virkkunnen model 

(Moser, 1988) 

 

)())()()((

)(

)(
),(

32

1

tCKtCtXtSK
dt

dC

tX

tC
KSX

−−=

=

  2.1.1.2.22 

 

where: C(t) = cell-substrate group 

 concentration; 

 K1, K2, K3  = constants 

• Kishimoto model (Kishimoto, 

1978): 

 

 ( , ) ( ( ) ) ( ( ) )X S Q X t X Q S t S= + − + −1 2  

2.1.1.2.23 

 

where , ,X S  = corresponding mean values; 

 Q1, Q2 = regression coefficients. 

 

• Staniskis and Levisauskas model 

(Moser, 1988): 

 

( , ) ( ) ( )X S k S t k X t= −1 2             2.1.1.2.24 

 

 

 

c) Growth kinetic with substrate inhibition  

 

In most cases, the kinetic model equations are 

derived (like the Monod model) from the 
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inhibition theory of enzymatic reactions. 

Hence, these equation types are not generally 

valid. They can be applied in connection with 

experimental acceptability. 

 

The most usually kinetic models with 

substrate inhibition are presented below: 

• Andrews model (Andrews - 

Noack), substrate inhibition in a 

chemostat (Andrews, 1968): 

 

 =

+ +

=
+ +

max

1

1

1

1
K

S

S

K

S

K S S

K

S

i

S

i

 

2.1.1.2.25 

 

where: Ki = inhibition constant (considering 

with the substrate influence).  

 

The graphical presentation is the following:  

 

 

Fig. 2.1.1.6 =(S) dependence cf. Andrews equation 

 

• Webb model (Webb, 1963): 

 

 =

+

+
max

( )S
S

K

S K
S

K

S

l

S

S

l

1

2
             2.1.1.2.26 

 

where: Ks
l = inhibition constant (considering 

the substrate influence). 

• Yano model (Yano et al., 1966) 

 

 =

+ +
max

,

( )

1

1
K

S

S

K

S

i S

j

j

            2.1.1.2.27 

 

where: Ki,S = = inhibition constant 

(considering the substrate influence). 

• Aiba model (Aiba, Hara, 1965): 

 

 =
+

−

max
,

S

K S
e

S

S

K i S              2.1.1.2.28 

 

The graphical presentation is given below: 

 

Fig. 2.1.1.7 =(S) dependence cf. Aiba equation 

 

Edwards (Edwards, 1970) analyzed eqs. 

(2.1.1.25 - 2.1.1.28) based on different 

experimental data sets. He demonstrated that 

it is not an objective criteria to classify these 

equations regarding the generalization 

potential. Hence, he recommended the 

Andrews model as the simplest and easy to 

use.  

 

Wayman and Tseng (Wayman, Tseng, 1976) 

proposed a different equation type in order to 

introduce a substrate inhibition kinetic: 

 

 =
+

− −max , ( )
S

K S
K S S

S

i S C           2.1.1.2.29 

where: SC = limiting substrate concentration (a 

threshold value).  
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This equation can be used whether the specific 

growth rate has a linear reduction trend (fig. 

2.1.1.9). 

 

 

Fig. 2.1.1.8 =(S) dependence cf. Waymann & 

Tseng equation 

 

d)  = f(S,P) Growth kinetic with product 

inhibition   

 

Hinshelwood (Hinshelwood, 1946) detected 

different product inhibition influences upon 

the specific growth rate: linear decrease, 

exponential decrease, growth sudden stop, and 

linear/exponential decrease in comparison 

with a threshold value of P. The first type 

(Hinshelwood - Dagley model) is presented 

below: 

 

 ( , ) ( )maxS P
S

K S
kP

S

=
+

−1            2.1.1.2.30 

 

where: k = inhibition constant (considering 

the product concentration influence).. 

 

This equation was modified as follows: 

• Holzberg model (Holzberg et al., 1967):  

 

 ( ) ( )maxP K P K= − −1 2             2.1.1.2.31 

 

where: K1, K2 = constants (>0).  

 

The graphical presentation of Holzberg model 

is presented below:  

 

 

Fig. 2.1.1.9 =(P) dependence cf. Holzberg 

equation 

 

• Ghose and Tyagi model (Ghose, 

Tyagi, 1979) fig. 2.1.1.11:  

 

 ( ) ( )max

max

P
P

P
= −1             2.1.1.2.32 

 

where: Pmax = maximum product 

concentration.  

 

 

Fig. 2.1.1.10 =(P) dependence cf. Ghose & Tyagi 

equation 

 

A different equation type was introduced by 

Aiba (Aiba, 1982), fig. 2.1.12: 

 

 ( ) max

( )
P e

K P t
=

− 1             2.1.1.2.33 

 

where: K1 = constant  
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Fig. 2.1.1.11 =(P) dependence cf. Aiba equation 

 

The Aiba and Shoda model (Aiba, Shoda, 

1989) presents a variant of the above equation: 

 

 ( , ) maxS P
S

K S
e

S

KP=
+

−            2.1.1.2.34 

 

Also Ierusalimsky (Ierusalimsky, 1967) 

recommended a model type describing the 

dependence  = f(P,S) which is similar with an 

enzymatic kinetic: 

 




( )
( )

( )

max

,

P
P t

K P ti P

=
+

             2.1.1.2.35 

 

or, more developed:  

 




( , )
( )

( )

max

,

S P
P t

K P t

S

K Si P S

=
+ +

            2.1.1.2.36 

 

where: Ki,P inhibition constant (considering 

the product concentration influence). 

 

The last equation represents the most useful 

kinetic model regarding growth kinetic with 

product inhibition. 

e) The influence of dissolved oxygen (as a 

second substrate) upon the specific growth 

rate  

 

Usually, the dissolved oxygen can be 

considered as a second substrate (Eiki, Osono, 

1990). Hence, the most used equation is the 

kinetic model with double growth limitation, 

(S,C), i.e. Olsson model (Moser, 1988): 

 

 ( , ) maxS C
S

K S

C

K CS C

=
+ +

           2.1.1.2.37 

 

where: KC = saturation constant (vs. oxygen),  

or, more complex, the Williams model 

(Williams, 1969): 

 

( , , ) ( )

( )

S C P
K S

K S

K P

K P

C

K C
K C K

S P

C

=
+ +

•

•
+

+ + −

1 2

3 4

           2.1.1.2.38 

 

f) The influence of environmental factors 

upon the specific growth rate  

 

There are simple models proposed to predict 

the pH effect (Ben-Hassan et al., 1991) on the 

process behavior: 

• Andreyeva and Biriukov 

(polynomial model) (Andreyeva, 

Biriukov, 1973): 

 

( ) ( ) ( )pH a pH b pH c=  +  +2        

2.1.1.2.39 

 

• Jackson and Edwards model (with 

inhibition) (Moser, 1988): 

 

( )
( )

H
H

K H K HH i

+
+

+ +
=

+ + 2
           2.1.1.2.40 

 

In order to model the simultaneous efect of 

substrate concentration and pH,  = f(S,pH), 

there are different variants of the previous 

equations: 

S
p
e
c
if
ic

 g
ro

w
th

 r
a
te

 [
1
/h

]

Product
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• Andreyeva and Biriukov 

(Andreyeva, Biriukov, 1973): 

 

 ( , )
( )

maxS H
SH

K SH
SH

K
S

i

+
+

+
+=

+ +
2  

2.1.1.2.41 

 

or: 

 

 ( , ) maxS H
S

K S

K

K HS

H

H

+

+
=

+ +
     

2.1.1.2.42 

 

• Jackson and Edwards (Moser, 

1988): 

 





( , )

( )(

( )

)
max

S H

S

K

H

H

K
K S

S

K
K

H

H

i

+

+

+

+

=

=

+ + + +

+

1

1

2

1

2

3

2.1.1.2.43 
 

The temperature influence is introduced 

through an Arrhenius equation type, 

conforming to Topiwala and Sinclair model 

(Topiwala, Sinclair, 1971): 

 

( ) , [ , ]

[ , ]

T A e A e A T T T

T T T

E

RT

E

RT

= − − 










− −

1 21 3 1 2

1 2

1 21

0

 

2.1.1.2.44 

 

Finally, Constantinides (Constantinides et al. 

1970) defines the dependence (T,X) using 

the following equation: 

 

( , ) ( )(
( )

)T X b T
X

b T
= −1

2

1             2.1.1.2.45 

 

where: 

 

b T K K T K1 1 2 3

2( ) ( )= − −             2.1.1.2.46 

 

and: 

 

b T K K T K2 4 5 6

2( ) ( )= − −             

2.1.1.2.47 

 

g) (S1,S2) Kinetic models based on 

different substrates  

 

The dissolved oxygen was commonly 

considered as a second substrate (cf. e)). 

However, there are many cases when two or 

more carbon sources are taken into 

consideration (Chiu et al., 1972). There are 

two primary cases regarding these aspects:  

• The cells grow through the sequential 

(consecutive) substrate consumption 

(diauxy); hence, a simple Monod model 

can be utilized; 

• The cells grow through the simultaneous 

consumption of substrates (e.g. 

wastewater treatment); in this case, the 

mathematical modeling is more complex 

(Chiu et al., 1972). 

 

2.1.1.3. Unstructured kinetic models for 

product formation  

 

The product formation kinetic is taken into 

account in conjunction with the growth 

kinetic. Nowadays, the Gaden classification  

(Gaden, 1959) is still useful. Based on this 

categorizing, four kinetic types can be defined 

(Moser, 1988): 

 

Type 0: This production type occurs even in 

resting cells that use only a little substrate for 

their own metabolism. The microbial cells 

function only as enzyme carriers. Some 

examples are provided by steroid 

transformation and vitamin E synthesis by 

Saccharomyces cerevisiae. 

 

Type 1: Type-1 situations include processes in 

witch product accumulation is directly 

associated with growth; in this case the 

product formation is linked to the energy 

metabolism. Examples include fermentation 

to produce alcohol and gluconic acid and 

situations in biological wastewater treatment. 

 

Type 2: Type-2 bioprocesses include 

fermentations in which there is no direct 
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connection between growth and product 

formation (for example, penicillin and 

streptomycin synthesis). 

Type 3: This production type includes those 

having a partial association with growth and 

thus, an indirect link to energy metabolism 

(e.g. citric acid and amino acid production) 

 

Recognition of the production type is done 

with the aid of plots rS, rX, rP = f(t), and 

expressly, tacking into consideration the 

specific rates qS, , qP. 

 

The diagram of the time dependence of the 

bioprocess specific rate is called 

quantification diagram (Moser, 1988). It gives 

the best insight into the bioprocess and a basic 

for designing mathematical models.  

 

The following figure shows the formal kinetic 

linear relationship between specific rates 

(product formation rate, qP, vs. specific growth 

rate, ). 

 

qP



II

I

III

 

Fig. 2.1.1.13 – Product formation rate vs. specific 

growth rate cf. Gaden equations (type I, II, III) 

 

Type 1: Product formation linked to microbial 

growth can be described by (Moser, 1988): 

 

r Y rP P X X= /               2.1.1.2.48 

and: 

 

q YP P X= /                2.1.1.2.49 

 

In the same way, Constantidines 

(Constantinides et al. 1970):  

 

r Y rP P S S= /               2.1.1.2.50 

 

Finally, the following relationship exists 

between yield factors: 

 

Y

Y
YP S

X S

P X

/

/

/=               2.1.1.2.51 

 

Substituting a Monod-type equation into eq. 

2.1.1.2.50 results in a hyperbolic function 

(Moser, 1988) for production in the case of 

growth association: 

 

r q X q
S

K S
XP P P

S

= =
+max

            2.1.1.2.52 

 

Type 3: Non-growth-linked product formation 

is more difficult to quantify because no direct 

relationship to growth exists. As an 

alternative, the dependence rP = f(X) is often 

successfully used: 

 

r k XP P=               2.1.1.2.53 

 

Product formation can also be quantified by 

the dependence of substrate utilization (cf. eq. 

(2.1.1.2.50). 

 

Type 2: When product formation is partly 

growth linked and partly independent of 

growth, a combination of eqs. (2.1.1.2.49) and 

(2.1.1.2.53) is valid, as it was proposed by 

Luedeking and Piret (Luedeking, Piret, 1959): 

 
q Y kP P X pr= +/               2.1.1.2.54 

 

Hence, the general forms of eq. (2.1.1.2.54) – 

with eqs. (2.1.1.2.49) and (2.1.1.2.53) as 

boundary cases – suggests a logistic equation 

(Luedeking, Piret, 1959, Moser, 1988). 

 

Kono and Asai (Kono, Asai, 1968) introduced 

a generalized concept, using the consumption 

coefficient  (as an apparent coefficient of 

growth activity): 

 
r k X k XP P P= + −

1 2
1 ( )             2.1.1.2.55 
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This equation can be linked to eq. (2.1.1.2.20) 

which describes the specific growth rate 

evolution. Hence, the Gaden type product 

formations can be particularized through 

different values of the parameter kP,j: kP,j, > 0 

or kP,j, < 0, j = 1, 2 

 

In special cases, different kinetic equations 

were proposed, according to experimental data 

(Shu, 1961, Fishman, Birjukov, 1974, Ryu, 

Humphrey, 1972, Brown, Vass, 1981). 

 

2.1.2. Structured models 

 

The most important structured models are 

correlated with the chemical cell structure. 

Williams and Ramkrishna has proposed 

models with two components. Williams 

(Williams, 1975) has considered the 

concentration of R-components (principally 

ARN) and D-components with structural-

genetic part (ADN and proteins). Ramkrishna 

(Ramkrishna, 1969) has divided the cell in G-

mass (ADN and ARN) and D-mass (proteins). 

Fredrickson (Fredrickson, 1970) has analyzed 

later on these models and has demonstrated 

their invalidity, due to kinetic expressions 

which don’t utilize the intrinsic concentrations 

of structural components.  

 

A rigorous structured model involves kinetic 

equations, which take into account the 

intrinsic concentrations of components (i.e. 

the component quantity / cell unity of 

volume).  

 

Hence, Frederickson builds up the general 

balance of a discontinuous reactor: 

 

d mVc

dt
mV r

j

ij

i

(  ) =          2.1.2.1 

 

where: m = total biomass (at time t); 

 V  = volume filled by the cells / cell 

mass unit;  

 Cj = mass of component j / cell volume 

unit (intrinsic concentration of component j); 

 rj = appearance/disappearance of 

component j through process i / cell volume.  

 

If V  is constant and one consider (cf. the 

unstructured kinetic) that: 

 

 =
1

m

dm

dt
        2.1.2.2 

 

the following equation can be obtained:  

dc

dt
r C

j

ij

i

j= −         2.1.2.3 

 

In the most structured models, the expression 

Cj can be ignored.  

 

Moreover, the term Cj can be substituted with 

the concentration Xj (mass of component j / 

cell mass unit), in conformity with the 

following relation:  

 

X C Vj j=          2.1.2.4 

 

The structured models can be applied for the 

mixed cultures, too. In these cases, the 

chemical structure is substituted with 

component specie divisions (population 

models). 

 

Harder and Roels (Harder, Roels, 1981) 

surveyed the biotechnology applications of 

simple structured models. Moreover, they 

presented the main principles of structured 

model design (derived from molecular 

biology): 

• The modifications of substrate/ 

intermediate concentrations induce 

modifications of the reaction rates; 

• The enzyme interactions with some small 

molecules generate modifications of 

enzyme conformation;  

• The concentration of some cell 

macromolecules accommodate oneself to 

environment conditions through synthesis 

rate modification; 

• The natural selection is an adaptation 

modality; 
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• The environment changes can induce 

some modifications in respect of different 

species in a mixed culture.  

 

Following these principles and according to 

the time relax concept, the authors proposed 

some structured models: 

• Biomass grow conforming to a bi-

compartimental model; 

• Biomass grow conforming to a tri-

compartimental model; 

• The synthesis of enzymes, which are 

genetic controlled. 

 

Moreover, Ryu and Kim (Ryu, Kim, 1992) 

studied a recombinant cell bioprocess (i.e. 

with/without plasmid carrying cells).  

 

For product formation kinetic, the following 

equation can be proposed: 

 

q k G bP P= ++

0 ( )        2.1.2.5 

 

where: k0 = constant of the global biosynthesis 

rate;  

  = genetic expression efficiency; 

 GP = ADN concentration in plasmids; 

 + = specific growth rate of plasmid 

carrying cells; 

 b = constant. 

 

This equation can be related to the 

unstructured model of Luedeking - Piret (eq. 

2.1.1.2.54), which can be written as follows: 

 

dP

dt
A

dX

dt
BX= +

+
+

              2.1.1.2.54’ 

 

where: X
+
 = concentration of plasmid carrying 

cells; 

 

Hence, the parameters A and B get a biological 

significance: 

 

A k G

B Ab

P=

=

0
        2.1.2.6 

2.1.3. Segregated kinetic models  

 

The scientific literature doesn’t clearly present 

other segregated kinetic models, except those 

using the composition based on chemical 

structure.  

 

 

Shuler (Shuler, 1985) defines as segregated 

(but unstructured) models, the models based 

on the presumption that an unique variable 

(i.e. cell age, cell dimensions) can completely 

describe the cell state (i.e. all cells with the 

same age or dimensions have the same 

chemical composition and the same 

productive potential). 

 

Also, Bley (Bley, 1987) proposed a specific 

model for yeast cells, which comprises two 

different physiological states – budding 

/unbudding cells. Moreover, he proposed a 

model taking into consideration the yeast 

cells, which are characterized by two 

physiological states. The two states differ 

through , dS/dt, biomass production 

efficiency, etc. Hence, for a continuous 

process, in which the state transition is 

(mainly) influenced by the substrate 

concentration (S), the following equations are 

valid: 

 

dX

dt
S k S D X k S X

dX

dt
S k S D X k S X

dS

dt
S S D S X S X

1
1 1 1 2 2

2
2 2 2 1 1

0 1 1 2 2

= − − +

= − − +

= − − −















( ( ) ( ) ) ( )

( ( ) ( ) ) ( )

( ) ( ) ( )





 

 

2.1.3.1 

where: X1 = biomass concentration for 

budding cells; 

 X2 = biomass concentration for 

unbudding cells; 

 D = dilution rate. 

In this model, k1(S) represents the specific rate 

to pass from the state X1 to X2, and k2(S) the 

specific rate for the inverted process; 1 (S) 

and 2(S) represent the coefficients of yield 
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conversion (S → X1 and S → X2, 

respectively). 

 

Nowadays, the segregated and structured 

models are insufficiently applied. They were 

taken over from molecular biology and 

physiology, where they play an important role 

in cell mechanism investigations (Sonnleitner, 

Fiechter, 1989). For a fast increase of their 

applications in bioprocess control it is 

necessary: 

• To develop the non-destructive analytical 

techniques (Sonnleitner, 1992); 

• To link the mathematical modeling to the 

understanding of the internal cell 

mechanisms (van Breusegem, Bastin, 

1992). 
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2 . 2 .  C O N T R O L  S T R U C T U R E  C O N F I G U R A T I O N   

 

 
2.2.1. Control statement 

 
The bioprocess control (and optimisation) 

strategies are based on three main 

implementations (Pokkinen et al., 1992): 

• Algorithmic optimisation: the optimum 

can be analytically reached (due to 

relationship defined between process 

parameters); hence, the algorithmic 

optimisation is cheaper that the adaptive 

one; 

• Adaptive optimisation: this kind of 

optimisation requires not a priori 

knowledge regarding the existing 

relationships between bioprocess 

parameters; 

• Intelligent technique optimisation: 

requires knowledge transfer from a human 

expert to the control structures (expert 

system, neural nets, fuzzy structure, etc). 

 

Generally speaking, the first solution offers 

the answer based on peak parameter values 

estimation, i.e. process optimisation is 

performed in connection with a (lot of) 

specified parameter(s). The second one 

utilises uncomplicated kinetic models with 

periodical (i.e. the simple period) parameter 

adjustments. Hence, the optimum indices are 

continuously adjusted.  

 

The control optimisation difficulties come 

from continuous variation of optimal 

bioprocess conditions, due to living cells and 

metabolic cycles.  

 

The major bioprocess control difficulties are 

presented below (DECHEMA, 1984): 

• The impossibility to access on-line all 

process variables; 

• The measurements are noise influenced; 

• The process has high value of time delay; 

• The process parameters are strongly 

interconnected; 

• The bioprocess evolution curves are time 

varying and depend upon initial 

conditions. 

 

The first obstacle till to be removed through 

the large-scale use of biosensors (e.g. glucose 

sensor). The standard method is based on 

observation schema (Nogai, 1979), which 

utilise secondary measurements. For example, 

it is easy to determine the RQ values (in a fed-

batch bioprocess) through the substrate 

addition varying. In this case, the main 

problem is to fix the set-point value of the 

secondary variable in order to attempt the 

desired value of the primary process variable.  

 

The general configuration of a bioprocess 

control structure is shown in fig. 2.2.1. 

 

2.2.2. Performance criteria 
 

The scientific literature (Moser, 1988, 

Richards, 1988, Trilli, 1977) recommends, 

from the bioprocess control point of view, 

three performance indices, which must be 

maximised: 

• the productivity; 

• the conversion; 

• the profit. 

 

The productivity and the conversion rate look 

upon technological aspects, and the last one 

considers the economic point of view.  
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Fig. 2.2.1 The general structure of bioprocess control  

 

To clarify the productivity concept (rj) 

(dimensions kg*m
-3

*h
-1), the curve from the 

considering fig. 2.2.2 can be used 

demonstrates for discontinuous processes. 

Hence, a certain lag time, t0, is necessary 

between production cycles due to harvesting, 

emptying and refilling operations (Moser, 

1988).  

 

Drawing a tangent from this point to the 

concentration/time curve, the value of the 

product concentration is obtained at point 2; 

this level can be reached in the whole 

production time (ttot=t0+tr).  

 

Fig. 2.2.2 Schematic representation of optimal 

operating point for a process based on different 

economic criteria (from Moser, 1988)  

t0

cost, ci

t1 t2 t3 t4 t5

rj

1

2

3

4 5

time
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The maximum productivity attainable in a 

discontinuous bioprocess can be calculated 

from: 

 

r
C C

t t
t t tj

j j

r

rmax

max
=

−

−
= −

0

0

2 0        2.2.1 

 

Point 1 (fig. 2.2.2) gives the maximum 

productivity of an equivalent continuous 

bioprocess (because a continuous process has 

no dead time, the slope of the tangent is greater 

than in a batch process).  

 

Moreover, at point 5 the productivity is 0. This 

point may be of interest when very expensive 

substrates are being used (Moser, 1988): in 

these cases, the process may be run to 

complete substrate utilisation. 

 

The conversion, I, is defined (V = constant): 

 

 i

i i t

i

C C

C
=

−0

0

           2.2.2 

 

and can also be given as a relative quantity: 

 





= i

i max

          2.2.2’ 

 

Moreover, a yield, Yi/j, can be determined as 

follows: 

 

Y
C C

Ci j

j t j

i

/ =
− 0

0

          2.2.3 

 

The yield compares the total amount of a 

product j yielded from an amount of material i 

consumed. A relative yield can also be 

defined: 

 

Y
Y

Y
i j rel

i j

i j

/

/

/ max

=          2.2.3’ 

 

The output of the reactor (dimensions 

tons/day) can be calculated from the 

relationship: 

 

iiii nYnOutput ==           2.2.4 

 

where nI is the mass flow of component i [t/d] 

(Moser, 1988). If i → 1 or Yi → 1, the output 

will be equal to ni. 

 

Point 4 in fig 2.2.2 represents the point where 

the minimum costs are reached (Moser, 1988). 

The accumulated cost at any time can be 

formulated according to: 

 

C
C

W

C

W
tot Kg

B R
/ = +          2.2.5 

 

where: CB = batch costs (sterilisation, 

materials, etc.); 

 CR = running costs (stirring & aeration 

power, etc.) 

 

Hence, a typical time course for the 

accumulation of costs in a batch bioprocess is 

shown in fig. 2.2.3; the time when costs are 

minimal (t4) may be calculated. 

 

 

Fig. 2.2.3 Typical cost time evolutions for a 

discontinuous bioprocess over time (from Moser, 

1988)  

 

Finally, point 3 from fig. 2.2.2 is that of 

maximum profitability. From an empirical 

point of view (Moser, 1988), this point lies 

between the point of maximum productivity 

(for a batch bioprocess) and the point 

Ctot

CR

CB

Cost, C

Time, t
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representing minimum costs. The profit is 

calculated through the following analytical 

relationship (Geyson, Gray, 1972, Moser, 

1988): 

 

)(

)-(=]rofit[$/

eB

Rpe

CC

tCCpriceWtonaP

−−

−−
 

2.2.6 

 

where: W = mass, [kg]; 

 Cpe = the extraction cost for product 

isolation, [$]; 

 Ce = the extraction running costs, [$]. 

 

The maximum profit can be graphically 

obtained from eq. 2.2.6 as it is shown in fig. 

2.2.4. Hence, the maximum profit represents 

the slope of the tangent to curve drawn from a 

starting point A. 

 

Fig. 2.2.4 Graphic method for evaluating the 

maximum profit at a given selling price and starting 

point (from Moser, 1988)  

Finally, one can appreciate that the use of 

economic analysis of processing costs is a 

powerful tool in establishing control 

performances criteria.  

 

t0
Time

A

W(Price - Cpe) - CRt

Profit  max.

Price 2

Price 1



PART 

TWO 
B I O P R O C E S S  C O N T R O L  S T A T E M E N T  

 

 37 

2 . 3 .  B I O P R O C E S S  C O N T R O L  S T R A T E G I E S  
 

 

2.3.1. Bioprocess control using a priori 

model 

 

Good knowledge about physiological states 

and operation modes which characterize a 

biosystem, allow the design of control 

algorithms dedicated to optimize the 

bioprocess (Vanichsriratana et al. 1996). If 

this knowledge is enough for model design 

(i.e. mathematical description of cell 

metabolic processes), then: 

• The process mathematical description is 

used for the design of the control and 

optimization algorithms (Abidi et al., 

1993; Isaacs, Thoma, 1992); 

• The model (based on the cellular 

metabolic reactions) can produce more 

information about the specificity of the 

applied procedure (Rohner, Meyer, 1995; 

Eaton, Rawlings, 1992). 

 

A good mathematical model (i.e. 

comprehensive, with skillful microbial 

kinetics integration) is able to give predictions 

relative to procedure efficiency (Moser, 

1984). Moreover, it represents the best way for 

strategy design of optimal control (Slimes et 

al., 1995). 

 

Mathematical models, which describe the 

living cells evolution, must represent the 

dynamic nature of the biosystem, as general as 

possible (and more complex as a 

consequence), less empirical, reflecting the 

biochemistry of the microorganism culture. In 

these conditions, the model should be set up 

based on a compromise between the detailed 

description of the bioprocess (which means 

the use of o great number of parameters, often 

undeterminable/ uncontrollable) and the use of 

a limited number of parameters easy to 

estimate and control. (Patwardhan et al., 1992; 

Henson, Seborg, 1992). 

 

As a general rule for the bioprocesses control 

with a priori model, the deterministic models 

are preferred to the probabilistic ones 

(Cazzador, 1988). For the time being, the 

unstructured deterministic models (the cells 

are considered as black-box units) are very 

used in the bioprocess control. In the future an 

increase of the structured models role is 

expected, as a consequence of modern analysis 

methods development, as well as of the 

capacity to more adequately describe the 

phenomena. 

 

These characteristics can be accomplished 

taking into account the cellular structure, at the 

level of the chemical components (chemical 

structured models) or from the point of view 

of cellular morphology (size, dimension and 

cellular age). 

 

Also it is necessary to remark that the control 

bioprocess can be done, besides the kinetic 

equations, using the mass balance equations 

(Weinrich, Lapidus, 1972; Balzer et al., 1984) 

and the typical elements introduced by the 

bioprocess stoechiometry (yield coefficients 

YX/S, YP/S, YX/O, etc.). 

 

2.3.1.1. Main characteristics of the control 

with mathematical model 

 

The development of a global model for the 

bioprocess evolution offers, besides the 

advantage of the analytical determination of 

the optimum value, the means to change the 

parameters during the process. 

 

In these conditions, after setting up the model, 

the maximizing/minimizing strategy must be 

established as well as the performance index 

(Cardello, San, 1988; Dovi, Reverberi, 1993). 

 

If the mathematical rules, which characterize 

the bioprocess, are defined, the bioprocess 

control consists of an algorithm put into 

operation in order to maintain the parameter 

evolution all around the optimum values. In 
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fact this represents the simplest case for the 

use of a control algorithm. 

 

The major problems connected to the a priori 

model control are determined by the nonlinear 

and non-stationary characteristics of the 

bioprocess (Shields, Kao, 1994). Moreover, 

the access to the information (on-line and 

estimative determinations) is limited and 

powerfully affected by several errors, as it has 

already presented.  

 

In a recent study, Proell (Proell et al, 1994) 

have presented the solution of a bioprocess 

control using a priori model. He proposed the 

following equations: 

 

dX

dt
X

X

V

dV

dt
= −        2.3.1.1 

dS

dt

FS

V

X

Y

S

V

dV

dtX S

= − −0 
/

      2.3.1.2 

dC

dt
q S

C

V

dV

dt

t t= −3
       2.3.1.3 

dV

dt
F FV= −         2.3.1.4 

 

where: X  = cell concentration; 

 S  = substrate concentration; 

 V  = volume of culture; 

 Ct  = inhibitor (toxin); 

   = specific growth rate; 

 F  = feed rate; 

 So  = substrate concentration in the 

feed; 

 YX/S  = yield coefficient (S → X); 

 Fv  = evaporation loss rate. 

 

Conforming to the above conditions, the 

analytical expressions of the parameters YX/S 

and  are: 

Y
y

My
X S/ =

+




       2.3.1.5 

 =

+ +
+

max

S

K S
S

K

K

K C
S

i

t

t t

2 2
     2.3.1.6 

 

where the values of parameters y, M, max, Ki, 

Ks and Kt are obtained by estimation. 

 

In this case the control problem comprises two 

levels:  

• the determination of the time minimum 

value at the end of the process for which 

the cell concentration attains the 

maximum value (after this moment the 

process can be described as a stationary 

system); 

• the optimization of the global productivity 

in a fixed time. 

 

Hence, the authors define the objective 

function: 

 

max ( )
F

F X dt

t f

=  
0

       2.3.1.7 

 

The system is characterized by cell 

concentration, substrate concentration, toxin 

concentration and culture volume, the 

following restrictions being necessary: 

 

F F F

V V

C Ct t

min max

max

max

 

 



0        2.3.1.8 

 

The optimum feed flow rate is obtained by 

maximizing the functional Hamiltonian 

(Proell et al, 1994): 













=



=

=

0

;0

;0

min

max

FS

F

F

HifF

HifF

F

H
HifF

F





     2.3.1.9 

 

where: FS = solution on the singular arc. 
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The control solution must be circumscribed to 

the control conditions afforded by the growth 

specific rate: 

 

F t F t K t( ) ( ) ( )+ = +1       2.3.1.10 

  ( ) ( )t tref= −       2.3.1.11 

 

where: ref = optimal value of the specific 

growth rate (set-point value); 

 K = constant  

 

Taking into account the linear dependence  = 

f(S), the relationship can be written: 

 

( ) ( )t S S tref= −       2.3.1.12 

 

The set-point value, Sref, can be analytically 

determined: 

 

S
K K

ref
S i=
2

       2.3.1.13 

 

In the authors’ opinion, in order to modify 

these models into linear equivalents, it is better 

to use the nonlinear modifications of the 

coordinates. In this way, the fermenter 

productivity is indirectly controlled by the cell 

concentration, substrate and metabolic 

product concentrations adjustment; the 

obtaining results are sub-optimal.  

2.3.1.2. Bioconversion control using a priori 

model  

 

In many cases, in the bioconversion process 

for complex chemical substance obtaining, 

strong inhibition exercised by substrate or 

product has been recorded. 

 

To control such processes, it has been 

established, as a general rule, the use of the 

optimum domains (without inhibition) for the 

major bioprocess parameters. 

 

For the bioprocesses characterized by 

substrate inhibition, the fed-batch 

fermentations are preferred, the substrate and 

other products being introduced during the 

process, according to a specific protocol. 

 

Meanwhile, for the bioprocess performance 

improving, the repeated fed-batch system has 

been used, which means that at the end of the 

process about 5-10% of the medium volume is 

kept as inoculum for the next cycle. In these 

culture conditions, the system is safe as 

regarding the sterility and the apparatus 

fiability. 

 

The control of the bioprocesses when the cell 

growth and product formation take place at the 

same time, is based on the modeling with 

balance equations including kinetic 

expressions. In this way, by solving the 

differential equation system, the optimum 

concentrations of cells and products, as well as 

the specific process rates can be determined. 

 

2.3.1.3. Conceptual restrictions of the 

control based on a priori model 

 

The control of the bioprocesses according to a 

priori model represents an optimal method, 

due to the possibility of analytical 

determination of the extreme values of the co-

ordinates. 

 

As it has already presented in #2.1 a great 

variety of analytical models can describe the 

culture evolution steps. If the parameter 
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influence is considered, the models are able to 

realize a proper fit between model and 

experiment. Despite these aspects, the models 

mentioned in the literature can not describe 

accurately enough all the evolution steps of a 

complex bioprocess. 

 

This fact is a consequence of the lack of 

measurement methods for on-line obtaining 

the variable levels from the system, (cf. #1.3.). 

On the other hand, the theoretical studies 

presented in the literature can not cover all the 

biological, chemical and physical phenomena 

taking place during micro-organism 

cultivation. 

 

Hence, there are a great number of kinetic 

models, each one trying to better present the 

parameter interdependence and the bioprocess 

evolution. Therefore, in the future, the control 

structure based on a priori model will be 

replaced by more flexible configurations using 

the adaptive or artificial techniques in addition 

with the pr3evious control structures. 

 

2.3.2. Adaptive control of bioprocesses 

 

At the same time with the developing of the 

bioprocess control based on a priori model, 

other alternative control systems were 

designed (Liu et al., 1993; Jorgensen et al., 

1992). The most attractive was the adaptive 

control strategy (Ferreira, de Azevedo, 1996, 

Vanichsriratana et al., 1996). 

 

The adaptive control structures (cf. to the 

Belgian School Bastin, Dochain, 1990; Chen 

et al., 1991), are based on the design of 

different estimation algorithms which are able 

to determine the off-line parameter values. 

Many control algorithms were developed 

based on minimal knowledge about bioprocess 

kinetics (i.e. the minimal modeling concept). 

Hence, the general state space model which 

describe the dynamics of bioreactors can be 

described as follows: the bioprocess reactions 

which occur in the reactor are assumed to be 

encoded into a reaction network of M 

reactions involving N components (N > M).  

 

For instance, the following equation describes 

a simple growth microbial process, with a 

single substrate (with concentration S): 

 

S Xg
⎯ →⎯         2.3.2.1 

 

This relationship represents an auto-catalyzed 

reaction, with g = growth rate, X = biomass 

concentration. Note that biomass production 

requires an initial biomass concentration. 

 

The enzyme-catalyzed reactions can be 

described as follows: 

 

S X P XC+ ⎯ →⎯ +


       2.3.2.2 

 

where: C = enzymatic catalysis rate; 

 P = product. 

 

The enzymatic catalysis is conceivable with a 

biomass, which grows on the same substrate. 

 

An usual example for this kind of complex 

reaction is the yeast growth on glucose 

substrate. This bioprocess is characterized by 

three metabolic reactions: 

• Respiratory growth on glucose (a); 

• Fermentative growth on glucose (b); 

• Respiratory growth on ethanol (c). 

 

( )

( )

( )

a S O X C

b S X E C

c E O X C

+ ⎯ →⎯ +

⎯ →⎯ + +

+ ⎯ →⎯ +







1

2

3

      2.3.2.3 

 

This example (Bastin, 1992), involves three 

reactions with five components; O represents 

dissolved oxygen concentration, E, ethanol 

concentration and C, dissolved carbon 

dioxide.  

 

Hence, the above example can be generalized, 

and the general dynamic model of the 

bioprocess can be written: the mass balance 

dynamics (of each component) results from 
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two mechanisms – i.e. reaction kinetics and 

exchange of material with the environment: 

 

d

dt
k D Q Fi

ij j i i i

j i


 =  − − +



      2.3.2.4 

 

where: 

a) 
j i

  represents the rate of consumption 

and/or production of component i in the 

bioreactor, according to the reaction 

network; the summation is taken over the 

reactions with index j which involve the 

component i. 

b) Kij represents the yield coefficients 

(strictly positive) of the component i  in 

reaction j (e.g. YX/S or YP/S, ); 

c) Qi represents the rate of removal of 

component I from the reactor in gaseous 

form per unit of volume; 

d) Di represents the dilution of component I 

in the bioreactor due to the increase in 

volume (D = dilution rate); 

e) Fi represents the feed rate component I 

into the reactor per unit of volume. 

 

If the following matrix notations are 

introduced:  

 

MxNmatrixKK

FFF

ij

N

T

M

T

N

T

],[

],.....,[

],.....,[

],.....,[

1

1

1

=

=

=

=





      2.3.2.5 

 

then the bioprocess dynamic can be 

represented as follows: 

 

d

dt
K t D F Q


   = − + −( , ) ( )      2.3.2.6 

This General Dynamical Model of biological 

reactors (proposed by Prof. Bastin) is the 

fundament of the control algorithms, which 

will be presented below. 

 

Hence, cf. to eq. (2.3.1.1) it can be obtained: 

 

XorX gijj  == )()(      2.3.2.7 

 

where () = specific growth rate. 

 

The dynamic model become: 

 

 

d

dt

S

X

k

k
D

S

X

F
( ) =

−







 −









 +










1

2 0
      2.3.2.8 

 

and  can be written as follows: 

 

 

 

( , ) ( , )

( , ) ( , )

S X S X SX

S X S X X

=

=
       2.3.2.9 

 

Conforming to the second relationship from 

(2.3.2.8), the dynamic model is identical with 

the classical one whether k2 = 1 and F = DS0 

(S0 = substrate concentration in the feed rate): 

 

dS

dt
D S S k X

dX

dt
D X

= − −

= −

( )

( )

0 1



     2.3.2.10 

 

Moreover: 

 

q
Y

kS

X S

= 



/

1       2.3.2.11 

 

Hence: 

 

dS

dt
D S S q XS= − −( )0      2.3.2.12 

 

Moreover, for an autocatalytic reaction, with 

one substrate and one gaseous product, the 

following equation can be used: 
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S X P


⎯ →⎯ +        2.3.2.13 

 

and the global dynamic model becomes: 

 

d

dt

S

X

P

k

k

D

S

X

P

DS

Q

















=

−















−

















+

















−

















1

2

0

1

1 0

0

0

0  

2.3.2.14 

 

The design of the kinetics () is complex, as 

it depends on the following factors: 

• The adequate choice of biological and 

physic-chemical factors; 

• The founding of an analytical relationship 

for correctly describing the phenomena; 

• The determination of kinetic coefficients 

based on experimental data. 

 

Consequently, Prof. Bastin recommends the 

introduction of a minimal modeling of the 

bioprocess kinetic () using the expression 

done below: 

 

    ( ) ( ) ( )= H       2.3.2.15 

 

where: H() is a known matrix (i.e. it 

represents the known component of the 

kinetics) and () represents the unknown 

component. The above equation is flexible and 

involves many realistic situations. The 

limiting situation comprises a bioprocess 

kinetics entirely unknown: 

 

   ( ) ( )=        2.3.2.16 

 

The enzymatic catalysis bioprocess offers a 

simple example of the minimal modeling 

concept application: 

 

S Xg
⎯ →⎯        2.3.2.17 

S X P XC+ ⎯ →⎯ +


      2.3.2.18 

 

Consequently, the following situations are to 

be considered: 

 

 I If the kinetic is a priori 

completely unknown, the parameters can be 

defined as follows: 

 

  

  

1

21

( ) ( , , )

( ) ( , , )

=

=

g

C

S X P

S X P
     2.3.2.19 

 

 II Moreover, the following 

expression can be added: 

 

    ( , ) ( , ) ( )t t G=       2.3.2.20 

 

where: (,t) = specific growth; 

 G() = diagonal matrix of the product 

   n

n j

  

 

Taking into account the above expression (if 

the specific reaction rates are unknown), two 

relationships can be written: 

 

  

  

1

2

( ) ( , )

( ) ( , )

=

=

g

C

S P

S X
      2.3.2.21 

 

In this case, the matrix H() becomes 

H G
SX

SX
( ) ( ) = =











0

0
     2.3.2.22 

 

Finally: 

 









g

C

S X P

S X P

SX

SX

( , , )

( , , )









 =




















0

0

1

2

    2.3.2.23 

 

 III If the specific growth rate 

(S,P) is an unknown parameter of the model, 

the following variables can be defined:  
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  

  



1

2

0

0

( ) ( , )

( ) ( , )

( )

=

=

=










S P

S X

H
X

SX

C       2.3.2.24 

 

Hence, using the state variables, which are 

continuously monitored (through standard 

instrumentation), on-line estimation 

algorithms can be developed and useful 

information will be send to the human expert.  

 

Moreover, if an adaptive control algorithm is 

used, the controller must determine, at each 

time period, the best-input flow in the system, 

based on measured and estimated variables. 

From the point of view of the General 

Dynamic Model, the control objective is the 

regulation of the output variable (i.e. a scalar 

variable) which represents a linear 

combination of the state variables: 

 

y C Ci i

T

i

N

= =
=

  
1

      2.3.2.25 

 

where: CT = [C1, C2,...,CN] represents a vector 

of known constants. In this case the variable u 

designates the substrate flow: 

 

u F

F bu f

b b b b b b j i

f f f f f j F j i

i

T

N i j

T

N i j j

=

= +

= = =  

= = =  

[ , ,..., ]

[ , ,..., ]

1 2

1 2

1 0

0

 

2.3.2.26 

Conforming to these notations, the General 

Dynamic Model (2.3.2.6) becomes: 

 

d

dt
K D bu f Q


  = − + + −( )     2.3.2.27 

 

with f and Q on-line measurable. The state 

variables, , can be on-line measured/ 

estimated, too.  

 

The principle of the Linear Control involves 

the design of a control law u(, Q, f, y*), 

which is a multivariable, non-linear function. 

This control law must be designed so that the 

error (y*-y) respects a pre-specified nonlinear 

differential equation. 

 

The design of the Linear Control procedure 

involves three steps: 

 

Step I: An input/output model can be obtained 

(through derivation) from the general 

Dynamic Model: 

 

d y

dt
f t u t f t




= +0 1( ) ( ) ( )      2.3.2.28 

where:  = relative degree  

 

The I/O model is linear according to u(t); at 

the mean time, f0(t) and f1(t) can be complex 

functions, depending on , Q, F and theirs 

derivatives. 

 

Step II: A linear reference model of the error 

[y*(t)-y(t)] will be selected, conforming to the 

following equation: 

 

10)]()([ 0

0

1 ==−
=



− 


 withtyty
dt

d

j
j

j

 

2.3.2.29 

 

The coefficients  are arbitrary selected so that 

the above differential equation becomes 

stable. Moreover, the reference model gets 

independent, if the working point is 

considered. 

 

Step III: Finally, the control variable u(t) is to 

be calculated, so that the I/O model becomes 

identical with the reference model: 
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u t
f t

f t

d

dt
y t y t

d y t

dt

i

j

j

j
j

( )
( )

[ ( )

( ( ) ( ))
( )

]

= − +

+ − +
−




=

−



1
0

0

1









    2.3.2.30 

 

The last equation designates the control law 

with exact linearization.  

 

Conforming to author conceptions, the design 

of an adaptive control algorithm must focus on 

the entire bioprocess stability. Hence, two 

general aspects must be outlined:  

a) The main objective of a fed-batch 

bioprocess control is to maintain the 

control upon an unstable evolution 

trajectory; in a continuous bioprocess, the 

main objective is to preserve the global 

stability; 

b) In a minimal modeling context (and 

depending on modeling strategies) the 

same linear controller design method can 

generate stable or unstable closed loops.  

 

Finally, the following conclusions can be set 

up: 

• The matrix conceptualization of 

bioprocess variables offers easy-to-use in 

control algorithm implementations 

(Hinde, Cooper, 1995; Meszaros, et al., 

1995), but does suggest nothing about the 

corresponding real variables; 

• The optimization is made during a sample 

time period (Estler, 1995; Andrews, 

1995); thus, it not corresponds to a global 

optimization (Harmon, et al., 1987; 

Modak, Lim, 1987; Modak, Lim, 1989); 

ipso facto, the control strategy is sub-

optimal (Morningred et al., 1992; Modak, 

Lim, 1992); 

• The control structures based on these 

model typologies don’t produce basic 

knowledge about the bio/chemical 

mechanisms, which control the cell 

metabolism (Lee, Ramirez, 1996). 

 

2.3.3. Intelligent control of bioprocesses 

 

The impact of intelligent techniques in the 

bioprocess application field represents, on one 

hand, a quasi-failure of the standard control 

strategy applications, and on the other hand, a 

pragmatic approach tentative in opposition 

with the knowledge bioprocess uncertainty. 

Hence, it has been found (Narendra, 

Parthasarathy, 1992) that the control structures 

based on the human decisional factor (i.e. a 

subjectively element) offer better results as the 

standard control systems based on algorithmic 

determinations. Moreover, it has been 

observed that a general stoppage exists in the 

bioprocess-modeling field (without the 

structured models); so that, the computer 

performances are developed in the detriment 

of the general knowledge concerning life 

phenomena (Hinde, Cooper, 1994; Cooper et 

al., 1992). Consequently, through intelligent 

techniques (i.e. neural nets, fuzzy structures, 

genetic algorithms or expert systems) the 

uncertainties regarding the living phenomena 

can be mathematically formalized. 

Furthermore, the (subjective) human 

knowledge is used and different simulation 

techniques are adopted in order to find out the 

evolution types. These kind of solutions offers 

better results as the standard control 

techniques but don’t promote advanced 

comprehension upon the metabolic routes of 

bioprocesses. 

 

2.3.3.1. Bioprocess control using expert 

systems  

 

The development in the field of fermentation 

process control makes necessary the 

integration of some research disciplines. 

Moreover, the control of biotechnological 

processes is based on the knowledge of experts 

and human operators as well as on analysis 

and processing of numerical data. Also, Expert 

Systems (ES) can handle this knowledge, 

acquired by human experts – but the specified 

knowledge are able to describe not more than 

the conscious thinking and decisions.  

 

The ES applicability starts with the selection 

of a specialized algorithm dedicated to the 
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designated bioprocess (ESDT). This selection 

is achieved following a well-defined set of 

rules. 

 

Hence, it must focus on the structure, 

functions, implementation structure of ES and 

ESDT algorithm characteristics (i.e. 

bioprocess limitations, etc.)  

 

ES – functions and implementation 

 

The specificity of an ES algorithm must be 

correlated with the functions, to be fulfilled in 

real conditions: 

• Identification of the cell population state 

(i.e. on-line evaluation of the 

physiological state, cell behavior 

interpretation, future state prediction and 

the diagnostic of biological phenomena); 

• Identification of the entire equipment state 

(i.e. fault detection); 

• Supervision of the conventional control 

equipment (i.e. set-point values 

modification, parameter control revision, 

etc.); 

• Advanced communication with the human 

operator (i.e. parameter monitoring, etc).  

 

The most used control implementation in the 

bioprocess field is the indirect control; two 

procedures are available: 

• The ES algorithm runs on an independent 

computer; it is interfaced with 

conventional controllers (this is, 

nowadays, the standard control 

procedure); 

• The ES and the conventional control 

algorithms run together on the same 

computer; this solution can be the best one 

in the bioprocess control field. 

 

ESDT characteristics 

 

The usual characteristics of all applications for 

bioprocess control are: 

• High run speed (i.e. ESDT must be 

developed in Assembler and/or C); 

• Rules activation at different time period; 

• Continuous cyclic operation; 

• Human operator intervention relating to 

bioprocess evolution; 

• Integration with other external algorithms 

(through information exchanges); 

• Powerful mechanism for knowledge 

organization during process evolution;  

• On-line integration of new information 

regarding process evolution; inexact 

knowledge rejection (i.e. advanced control 

system flexibility); 

• Continuous control system learning 

through neural nets and/or other structures. 

 

An useful ESDT involves the following 

features: 

• Limiting number of on-line 

measurable/estimable variables and 

relationships; 

• Powerful mechanisms for qualitative/ 

subjective information inclusion, and for 

confidence-level definition; 

• Continuous system supervision (i.e. 

modification of time sample period, sensor 

periodical re-calibrations, measure 

apparatus tests, etc). 

 

The design of an ES for fermentation process 

control is based on the database and 

knowledge resources formalization, i.e. it is 

preferably to define a specific ESDT for each 

kind of bioprocess 

 

2.3.3.2. Bioprocess control using neural nets  

 

The control and optimization of a continuous 

stirrer tank fermenter using a neural network 

(Thibault et all., 1994) is based on the 

presumption that the control set-point is not 

known explicitly, but it is calculated 

considering the goal (through neural nets, NN) 

to optimize an objective criterion. Hence, the 

final results show that NN can model very 

accurately the bioprocess dynamics and can 

predict the state variable over a long prediction 

horizon. 

 

For instance, it is assumed that the bioreactor 

volume remains constant and the biomass 

growth kinetics can be appropriately described 
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with a Haldane substrate inhibition model. A 

general objective cost function (J) is expressed 

by the following equation: 

 

XFXJ )1(  −+=        2.3.3.1 

 

where:  F = the flow rate  

 X = biomass concentration 

 

If it is desired to optimize the productivity, the 

value of  would be set to one. However, the 

process economics dictate the double 

condition to have at the same time the highest 

possible biomass productivity and a high 

biomass concentration. Hence, the authors 

resolve this conflicting objective by weighting 

accordingly both contributions to the objective 

function.  

 

The authors propose a NN to be used to predict 

the biomass and the substrate concentrations 

one sample period in the future, being given 

the inlet substrate flow rate, the biomass and 

substrate concentrations at the current 

sampling instant. A set of 200 samples, 

obtained by randomly changing the inlet 

substrate flow rate was considered as the 

learning data set. The NN weights were 

obtained using the backpropagation algorithm 

in order to minimize the sum of errors squares 

on both biomass and substrate concentrations.  

 

The results clearly demonstrates (Thibault et 

all., 1994) the ability of the neural model to 

indirectly represent the complex relationship 

occurring in the bioprocess. In addition, the 

NN was able to reproduce with an outstanding 

accuracy the variation of the objective 

function as a function of flow rate.  

 

Moreover, the use of the NN in conjunction 

with an optimizing routine can determine, at 

each sample instant, the inlet substrate flow 

rate that will maximize the steady state 

objective performance criterion. The authors 

note that the presence of noise increases the 

time required to find a proper NN; however, a 

moderate level of noise contributes to produce 

a more informative data set.  
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C O N C L U S I O N S  
 

1. The literature model investigation indicates that it is impossible to design conceptual models 

conforming to Edwards & Wilke postulates. Hence, the mathematical expressions of bioprocess 

parameter evolution are built using some conceptual simplifications (e.g. the multivariable 

character of bioprocess). Moreover, a dichotomy regarding the model classes can be seen: on one 

hand, it is necessary to increase the knowledge about the cell metabolic mechanisms, and on the 

other hand, the synthetic approach is acceptable from a macroscopic point of view (i.e. for the 

control design); 

2. The objective control criterion is to be made from an economic point of view, taking into account 

the (final) industrial requirements. Hence, different ways for profit determination are presented, 

linked with the bioprocess type and evolution phase.  

3. The analysis of different literature methods for bioprocess control proves that it is not possible, 

in this moment, to globally optimize this kind of processes. Hence, the control with a priori model 

is not efficient due to the non-existence of global bioprocess models; the adaptive control 

strategies are (theoretically speaking) sub-optimal: the optimization during each sample time 

period cannot agree (in most cases) with the global optimum. Finally, the intelligent control 

technique solutions offer an economic answer (i.e. an increasing of efficiency) versus the 

expansion of basis knowledge regarding the process general evolution. In addition, this solution 

is based on human experience, i.e. it involves strong subjective characteristics augmented by 

computer speed. 

 

 

 

 

 

 

 

 


